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to advance international cooperation in the field of structural system optimization and 
reliability theory, 
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tion of structural system optimization and reliability theory, 

to encourage education in structural system optimization and reliability theory. 
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M. J. Baker, United Kingdom 
P. Bjerager, Denmark 
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Members of the organizing committee are: 

M. J. Baker, United Kingdom 
H. O. Madsen, Norway 
Y. Murotsu, Japan 
R. Rackwitz, Germany F. R. 

M. Grimmelt, Germany F. R. 
N. C. Lind, Canada 
H. O. Madsen, Norway 
F. Moses, USA 
Y. Murotsu, Japan 
R. Rackwitz, Germany F. R. 
P. Thoft-Christensen, Denmark (Chairman) 

P. Thoft-Christensen, Denmark (Conference Director) 

The Conference was financially supported by 

IFIP 
DANFIP 
The University of Aalborg. 

I would like to thank the organizing committee members for their valuable help in organ
izing the Working Conference, and all the authors for preparing papers for the Proceedings. 
Special thanks to Mrs. Kirsten Aakjrer, University of Aalborg, for her efficient work as Con
ference Secretary before, during and after the institute. 

August 1987 P. Thoft-Christensen 
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ON THE APPLICATION OF A NONLINEAR FINITE ELEMENT FORMULATION 

IN STRUCTURAL SYSTEMS RELIABILITY 

J. Amdahl & B. Leira 
SINTEF, Division of Structural Engineering, Trondheim, Norway 

and 

Yu-Lin Wu 

Division of Marine Structures 

The Norwegian Institute of Technology, Trondheim, Norway 

ABSTRACT 

An attempt is made to combine methods for advanced progressive collapse analysis 

with a probabilistic formulation of load and resistance variables. A brief de

scription is first given of a nonlinear computer program intended for progres

sive collapse analysis of space frame structures. The basic idea behind the 

program is to use only one finite element per physical element in the structure. 

Plastic interaction functions for stress resultants serve as local failure func

tions of the system. The basic variables are the external load parameters and 

the yield stresses of the members. A dominant failure path is found by load in

crementation, where the direction in the load space is governed by the current 

smallest distance to the failure surface. The associated failure probability 

and bounds for system reliability are found by means of first order reliability 

methods. The use of the method is illustrated in numerical examples. 

1 INTRODUCTION 

Design of a structure according to a specific code commonly involves checking of 

individual structural members. However, most structures are redundant in the 

sense that collapse of the first single element merely causes the load to be 

redistributed. The system structural reliability may then be far different from 

individual member reliability. Efficient and accurate methods for evaluation of 
the system reliability will then be needed to form the basis for development of 

more rational codes. 

System structural reliability has been subject to considerable research effort 

during the last decade. Two mainstreams of analysis can be idenfified. The 

failure mode approach is based on ways in which the structure can fail, whereas 

the stable configuration approach is based on ways the structure can survive. 
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The probabilistic analysis corresponding to the former involves computation of 

the probability content of a union of intersections between sets. The latter 

approach leads correspondingly to the intersection of unions, see e.g. Refs. [1, 

2, 3, 4]. 

Estimation of system reliability on the basis of system failure modes has been 

considered by several authors. Simple but most useful bounds were derived by 

Cornell, [5], applying the failure probabilities of each mode separately. As 

these bounds frequently are too wide, closer bounds obtained by taking correla

tion between failure modes into account were introduced e.g. by Ditlevsen, [6], 

Ang and Ma, [7], Stevenson and Moses, [8],and Vanmarkcke, [9]. The bounds pre

sented in [6] have been extensively applied in the literature. Madsen, [10], 

discusses first vs. second order reliability analysis of series structural 

systems based on these bounds. 

Prior to evaluation of system failure probability, identification of the failure 

modes must be performed. Commonly, the most dominant modes in a stochastic sense 

are sought, as the total number of modes can be very large. An incremental 

method for this purpose was presented by Moses et. aI, [11, 12, 13, 14]. A 

method based on a secant stiffness formulation, also including a probabilistic 

algorithm, was introduced by Murotsu et. al. [15, 16, 17, 18, 19, 20]. Applica

tion of this method to reliability analysis of offshore structures has been con

ducted by Crohas et. al., [21, 22]. Guenard, [23], also studied offshore struc

tures by a similar method. 

An alternative strategy for performing the branch and bound operations as de

scribed by Murotsu has been adopted by Thoft-Christensen et. al., [24]. This 

so-called p-unzipping method has been applied by Baadshaug et. al., [25], for 

evaluation of reliability of jacket platform structures. 

Ang and Ma, [26], proposed a different method for determination of the most pro

bable failure modes by using mathematical programming based on the basic failure 

modes of the structure. Klingmfiller, [27], applied a procedure based on the 

principle of virtual work and mathematical programming algorithms. 

It seems that realistic models for structural behaviour is difficult to incorpo

rate in the search procedcures for identification of dominant failure modes. One 
possible solution would be a Monte Carlo type of approach, see e.g. [28, 29]. 

However, this will lead to numerous structural analyses, which constitute the 

most expensive part of the reliability determination. Alternative methods have 

been developed by Kam et. al., [30], for nonlinear structures with deterministic 
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strength. Similar simplified analyses based on mean values of random structural 

strength parameters are described by Lin el. al., [31). Methods based on exten

sion of Moses' method have been proposed by Melchers and Tang, [32, 33]. Recent

ly, a consistent formulation has been outlined by Gollwitzer and Rackwitz, [34], 

also including instabilities. 

Brittle structural behaviour has been included by several of the authors refer

red to above, see e.g. Refs. [14, 16, 24, 26]. Consideration of this topic has 

also been given by Giannini et.al., [35], Bjerager, [36]. 

Although there has been significant achievements with respect to techniques for 

reliability as~essment as such, the representation of structural behaviour is 

still very simple and idealized. To enhance the acceptance of reliability 

analysis there is a strong need for applying structural behaviour models with 

which the designers are familiar. 

In this paper, a method for identification of the most significant failure modes 

for nonlinear structures is outlined, based on a statistical representation of 

both external load and random strength. Instability failure is represented in a 

uniform way by progressive inclusion of internal hinges in the structural finite 

element model. The basis of the method is an incremental formulation of the 

equilibrium equations. 

2 NONLINEAR STRUCTURAl. ANALYSIS FORHULATION FOR SPACE FRAHES 

For a thorough description of the computer program USFOS it is referred to [37, 

38]. In the following only the basic concepts are reviewed. 

The main idea behind USFOS is to represent each physical element by one finite 

element as shown in Figure 1. This facilitates that input models from conven

tional linear analysis can be used with minor modifications. 

The basic finite element is the spatial beam element with 12 degrees of freedom. 

As stress and strain measures the stress resultants and the corresponding 

displacements are used. 

The coupling between axial and lateral displacements is automatically taken care 

of by including large deflection effects in the strain expression on local 

element level (von Karman theory). 
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In the elastic range equilibrium equations and incremental equations can be 

derived from the first and second variation of the potential energy. An impor

tant feature with the method is the choice of interpolation functions. These 

satisfy exactly the differential equation for a beam under axial force and 

lateral bending and yield trigonometric functions for compression and exponen

tial (hyberbolic) functions for tension. This facilitates closed form solutions 

for all integrations in the equilibrium and incremental equations. 

The modelling of plasticity uses stress resultants as basic parameters. The 

capacity of a cross-section is expressed by an interaction equation 

i 1 ... 6 ( 1 ) 

where 0y = yield stress, 5i , denotes a stress resultant. If a cross-section 

reaches the plastic state defined by Eq. (1) a hinge is introduced. Elastic and 

plastic displacements are separated. The plastic deformations are concentrated 

to the plastic hinges whereas the beam remains elastic between hinges. The next 

step is to introduce the normality criterion for the incremental plastic dis

placements and the consistency criterion for the incremental stress resultants. 

The latter criterion states that the stress state lies on the interaction sur-
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face during plastic deformation. From this, the elastoplastic stiffness matrix 

for a beam element with local large deflection effects is obtained. 

Plastic hinges can be introduced at beam ends or at midspan. In case of a 

plastic hinge at midspan, the element is divided into two subelements for which 

the elasto-plastic stiffness matrices are calculated separately. Subsequently, 

the midnode is eliminated by static condensation and the original element is 

again the basic element. 

The solution technique is based upon incremental loading with updating of the 

local element coordinate system and incremental stiffness matrix at each step, 

(updated Lagrangian technique). Equilibrium iterations may optionally be per

formed, but experience so far shows that acceptable accuracy is obtained with 

pure incrementation in most cases. 

The increment size is scaled automatically when plastification occurs so that 

the failure surface at the new hinge is not exceeded. 

The concept of plastic interaction formulas is very attractive. New cross

sectional types are easily made available by implementing the appropriate inter

action formulaes. At present the program offers tubular, circular, rectangular 

and I-profiles. Concrete sections are also being implemented. 

Thin-walled members are often not able to attain their theoretical plastic capa

city or only maintain this for a limited amount of plastic deformation. This 

loss of strength may for instance be induced by wall shear buckling of deep 

girders or local wall buckling on the compression side of tubes. The present 

formulation allows these important effects to be taken into account in an 

approximate manner by modification of the plastic interaction formulaes. Simi

larly, damages as dents in tubulars have been modelled by reducing the plastic 

interaction formulaes [39]. 

Numerical studies have shown that the program is able to predict with acceptable 

accuracy the large displacement behaviour of simple beam-columns as well as 

beams with membrane action with only one model element [38]. The program has 

also been compared successfully with alternative nonlinear finite element 

programs and experiments with planar and spatial frames [40]. 
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3 FAILtRE HOlE llENTIFlCATlDN 

The yield hinge concept used in USFOS is convenient also in the context of 

structural reliability. It is natural to define the event "failure" as the 

occurence of a yield hinge. In this way "buckling" of a member is no longer a 
failure event as such, but is the result of the formation of a sufficient number 
of yield hinges. This formulation is very attractive because the post-collapse 

behaviour for a given element is fully determined by the yield stress. The 

stress resultants are namely forced to follow the yield surface. As far as the 

yield stress is constant the "brittleness" problem, i.e. unloading of buckling 
members, is circumvented. Unfortunately, this condition is generally not met 

because in the more advanced calculations the variability of the yield stresses 
will be considered as well. 

In the subsequent derivation it is assumed that the yield stresses and the 
external load parameters constitute the set of basic random variables. 

Taking the occurrence of a yield hinge as the failure criterion, the associated 
failure surface is given by Eq. (1). However, whereas the yield stress of a 

cross-section is a basic random variable the stress resultants are dependent on 

the external load parameters. Thus, the failure function given by Eq. (1) 

should rather be formulated as 

i 1 .... n (2) 

where Ri = independent external load parameter. Contrary to Eq. (1) no closed 
form solution of Eq. (2) exists for general nonlinear problems. However, incre
mental relationships are available. They may be used to establish an approxi

mate failure function. 

. * Assume that the external loads have been lncremented up to a value RI , correspond-
* ing to a stress resultant state Si. Linearizing abuot this point there is ob-

tained 

(3) 

where v j , r k denote local and global degree of freedom, respectively. Einstein's 

summation convention is adopted. bil represents the increment in stress resul

tant Si due to an increment of external load RI , and is given by 
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(4) 

where kij = tangential element stiffness, tjk = current transformation between 

local and global degree of freedom, Fkl = elements of the inverted system stiff

ness matrix. Introducing the reduced variates 

R' 
1 (5) 

where RI , oR mean value and standard deviation of RI , Eq. (3) can also be 
1 

formulated as 

(6) 

where the current mean value, Si' is defined as 

(7 ) 

Eq. (7) may be substituted into Eq. (1), which now becomes 

i=1 .... 6, 1=1 .... n (8) 

where ° is the standard deviation and 0' is the reduced variate of the yield 
0y y 

stress. 

For convenience, it is here assumed that all variables are uncorrelated and 

normally distributed. Otherwise this should be accomplished by means of the 

Rosenblatt-tranformation. 

In this wayan analytical approximation of the failure function in terms of the 

true random variables has been established. Eq. (8) may be used to find the 

most probable failure point by the algorithm proposed by Rackwitz /41/. The 

failure point is exact provided that the linearization of the load effect is 

carried out on the failure point. (Possible deviation from the true load-load 

effect path during pure incrementation is disregarded in this context.) 

The incrementation is carried out in the load parameter space. A fundamental 

assumption is related to the incremental direction. This is selected so as to 

coincide with the current smallest distance to the failure surface for all 
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potential yield hinge locations. This gives the following direction cosines 

2 
(( .1!:..-) 

ao' y 

1=1 .•.• n 

• • where the derivatives are evaluated at the failure point (Oy' RI ). 

Due to the nonlinearities the direction varies during load incrementation. 

Hence, the loading up to the first failure point is carried out in several 

steps. 

(9) 

After failure a yield hinge is introduced with yield stress equal to the failure 

point value. The effect of yield stress pertubations can still be taken into 

account in the subsequent calculations. At a hinge, the increments in yield 
stress and stress resultants must obey the consistency criterion 

IIr o ( 10) 

Introducing the element stiffness equations and the normality criterion for the 
plastic displacement, the following relationship is obtained 

( 11) 

where the (elasto-plastic) incremental stiffness reads 

(12) 

k~j = elastic incremental stiffness. Thus, it comes out that an increment of 

the yield stress gives equivalent nodal forces 

(1 J) 

This yields in turn equivalent nodal loads 

m = 1 .••• 6 (14) 

The procedure is analogous to the approach adopted by Murotsu et al. /15-20/, 

but is now formulated for incremental loading. 
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with (p-1) failed hinges the failure function of the p'th hinge can be written 
as 

o (15) 

where 

(16) 

r = .... p-1, 1 = 1 .... n 

Thus, a failure mode is identified by incrementation of the external loads. At 

each step the shortest distance to the failure surface of all potential yield 

hinges is identified in the space of uncorrellated and normalized variables. If 

the yield hinges are some distance apart in the load space the step is scaled 

and the incrementation direction is recalculated along with updating of yield 
stresses of existing hinges. This process is continued until global collapse is 

detected, whereby the most probable failure mode is determined. Other failure 
modes can be identified by means of some branching algorithm. 

4 EVALUATION OF SYSTSHS RELIABILITY 

For each of the failure modes identified by the algorithm outlined in Section 3, 

a final failure function of the type specified by equation (15) is produced. 
However, the sequence of hinges formed during the analysis must also be con

sidered. Denoting by r~ the failure function obtained for mode i after forma

tion of the k'th hinge, the system probability of failure can be approximated by 

n 
i=1, 2 .... 1 k=1, 2 .... m(i) 

i 
(r 

k 
< 0)) (17) 

The intersection is taken over all the m(i) events of hinges forming for mode 
number i, and the union is over the total number, 1, of failure modes. 

Typically, Equation (17) will yield a lower bound on the system probability of 

failure, due to some failure modes being left out. If the linearization 

for structural load/load-effect relations needed for computation of each 

are located too far away from the failure points, however, this property 

be invalidated in some cases. 

points 
ri 
k 

could 
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Evaluation of the probability of intersection events of the type 

i 
PI n Ir '0)) (18) 

k=1, 2, .... m(i) k 

can be accomplished e.g. by linearizing each failure function at the respective 

design points in normalized space, see Hohenbichler and Rackwitz [42]. (Note 

that this linearization is not the same as linearization of the structural 

stiffness properties that was discussed above.) An equivalent event with a 

linear boundary and the same probability of occurrence as (18) can then be 

obtained, also possessing the same sensitivity with respect to the independent 

standard normal variables. 

Computation of the probability of the union event in (17) is thus greatly faci

litated. For most purposes, the Ditlevsen bounds, [6], can be employed. These 

require simply evaluation of the probability of pairwise intersections of the 

equivalent events in in addition to those in (18). 

Alternatively, the intersection probabilities can be computed by second order 

methods or more advanced first-order methods based on joint linearization 

points, see e.g. Karamchandani, [43], for a review. 

An upper bound for the system probability of failure can be obtained e.g. by 

truncating each failure sequence after a specific small number of hinges has 

formed. The applicability of this bound, however, depends on the specific 

structure being studied. 

5 ILLUSTRATIVE EXAHPLES 

Example 

The effect of linearization of stiffness properties on estimation of the design 

point is considered first. Assume that the plastic interaction between axial 

force N and bending moment M for a cross-section is given by the function 

r N2 + M + C - 1 = 0 (19) 

where C is a capacity factor. 
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The stress resultants are related to the external load R by 

N = R 
M = R2 

The basic random variables Rand Care uncorrelated and standard normally 

distributed. 

(20) 

(21) 

For this simple example the analytic failure function is found from Eqs. (19-21) 

r = 2R2 + C - 1 o 

The corresponding failure point is R = 0.612 and C = 0.25. 

Applying the incremental approach and linearizing about N*, M*, R* there is 

obtained 

N R 
M 2R* R - (R*)2 

By substitution of Eqs. (23-24) into Eq. (19) there follows 

(22) 

(23) 

(24) 

r = R2 + 2R* R - (R*)2 + C - 1 (25) 

The most probable failure point depends now on the linearization point R*. This 

is shown in Table 1. 

Table 1 Failure point vs. linearization point 

Linearization point Safety index Failure point 
R* II R C 

0 0.866 0.707 0.500 
0.3 0.704 0.618 0.336 
0.612 0.662 0.612 0.25 

Thus, the failure function based on the linearized expression gives the exact 
result provided that the linearization is performed on the true failure surface. 

In practice, the linearization is to be performed at some distance. However, by 

applying relatively small load increments in the neighbourhood of the failure 

point quite accurate results are obtained. 
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Example 2 

consider the portal frame shown in Figure 2. It possesses the same key 

parameters as the structure studied by Gollwitzer and Rackwitz in Ref. /34/, but 

the actual dimensions are not known and have to be assumed. Plastic hinges can 

occur at nodes 2, 3 and 4. The basic random variables are two independent, 

normally distributed load parameters P 
1 

~ 
~P2 
~ 

~~ 

® 0 

Figure 2 Portal frame 

and ~. 

~2 

8 
~ 

® , 
~I 

P1 

P2 

~ 

N(237.4, 59.35) N 

N(474.8,118.70) N 

1000 mm 

Dmid 39.01 mm 
t 0.78 mm 

cry = 300 N/mmz 

Reliability indeces for all the limit states corresponding to a failure mode 

approach are listed in Table 2. The limit states, which are categorized into 

initial failure limit states and collapse limit states, are plotted in the load 

parameter space in Figure 3 and Figure 4. 

Because the loads are incremented up to the most likely failure point on the 

limit state surface, the formation of plastic hinges has to be controlled. For 

example, from Figure 3 it is observed that the most likely failure point 

associated with failure of node 3 lies in the failure domain governed by initial 

failure of node 4. Hence, the formation of a hinge at node 4 has to be 

suppressed in this case. 

In Table 3 the incrementation procedure for failure sequence 3-4 is listed. It 

appears that the linearization point approaches the most likely failure point, 

which shows that the process converges. 

The possibility of multiple, local, most likely failure points corresponding to 

different quadrants of the failure surface is also considered. However, the 

calculations indicate that only one of the associated p-indeces is small enough 
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to be taken into account. 

It is noted that the improvement due to second order assessment of component 

reliability based on Equation 8 or Equation 15 is insignificant in the present 

example. 

The system reliability is calculated on the basis of the following model of a 

series system of parallel subsystems. 

The limit state H2 represents an incomplete failure path, but it is anyway of 

little significance. 

By a first order analysis 
-~ .. Pf = 0.79 . 10 . Th~s ~s 

and Rackwitz, namely Pf 

failure sequence 3-4. 

the system probability of failure is assessed to 

fairly close to the value predicted by Gollwitzer 

0.7 . 10-~. The largest contribution comes from 

TABLE 2 Reliability indeces 

Failure Hyperplane Safety index Failure point 
sequence no. II PI P2 

4 H 2.86 366 697 
3 H~ 5.42 241 1118 
2 H3 8.88 737 138 

4,3 H2 3.78 359 852 
4,2 H~3 4.30 416 840 
3,4 HH 4.43 361 938 
3,2 H34 8.60 -41 1332 

32 
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TABLE 3 Load history corresponding to failure sequence 4,3 

Increment 
No. 

1 
2 
3 

4 
5 

1250 

1000 

750 

500 

250 

-250 

-250 

-500 

Figure 3 

Linearization Safety index Failure point 
point • 

P1 P2 II P1 P2 

0 0 3.98 426 760 
250 446 3.02 376 702 
350 650 2.87 366 696 
366 696 2.86 366 697 

366 696 3.97 371 863 
369 796 3.81 362 853 
362 853 3.78 359 852 

o Most likely fai Lure point 

250 500 1000 1250 P (N) 
1 

Limit states of initiaL failure in load space 

• 
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oMost likely failure point 

750 

500 + 
mean 

250 

-250 250 500 750 1000 1250 P1 (N) 

-250 

-500 

Figure 4 Limit states of collapse in load space 

6 CONCLUSIONS 

A new method for identification of stochastically dominant failure modes of 
space frame structures has been described. It is based upon an efficient 

nonlinear finite element formulation where the material nonlinearity is modelled 
by means of yield hinges. The yield stresses and external load parameters are 
considered to be the basic random variables. The direction of load increments 

in the load space is determined on the basis of the shortest distance to the 
failure surface for all potential yield hinges. 

The attractiveness of the method is that it combines acknowledged reliability 
formats with an advanced physical representation of the structural behaviour 
in the large defelction range. The concept of cross-sectional interaction 

functions, which are used as failure functions, are well known for those working 
with conventional design methods. 
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FATIGUE LIFE ESTIMATION UNDER RANDOM OVERLOADS 

R. Arone 
Israel Institute of Metals, Technion 

R&D Foundation, Technion City, Haifa 32000, Israel 

ABSTRACT 

1\ st.ochast ic approach to fatigue crack growth under random 

overload sequences, superimposed on a base-line cyclic load is 

described. The approach consists in presentation of the delay time 

due to retardation effect associated with the overload peaks as a 

purely discontinuous Markov process. A numerical procedure based on 

the Kolmogarav-Feller integrodifferential equation is used to 

deLermine the probability of failure. Proposed model accounts for 

fracture occurrence either under an overload or under the base-line 

cyclic load. 

1. INTRODUCTION 

One of the main difficulties in evaluating fatigue crack grbwth in 

metallic structural components under random loading is associated 

with the interaction effects leading to retardation, acceleration and 

interrupted retardation phenomenon [1-141. For instance, sharp over

load peaks cause strong retardation effect which could significantly 

influence the fatigue life of the component [1,4-71. While such over

loads are generally rare, their influence is quite significant. In 

recent period several probabilistic models has been proposed for des

cription of the fatigue crack behaviour under random sequences of 

overload peaks [15-181. Presentation of the loading process as a 

superposition of a base-line constant-amplitude cyclic load and 

random sequences of overload peaks permitted relatively simple sto

chastic description of the fatigue crack behaviour [17,181. In what 

follows further development of the model described in [17,181 is 

given. 

2. MODEL 

As in Lhe earlier works [17,181 a superposition of random overload 

sequences on a base-line constant-amplitude cyclic load is considered 
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(Fig. la), overload peaks being generally random in time and 

magnitude. 

It is assumed that each individual overload contributes little to 

crack length but delays crack growth; the higher the overload stress, 

the longer the delay. The individual delay interval 6td associated 

with the given overload is determined as the difference of the times 

t. required for the crack to traverse the zone affected by the 

overload, and tf required for it to traverse the same distance in 

the absence of an overload (6t d =t.-t f , see Fig. lb). 

The individual delay interval is a function of the overload stress 
o~ crack length t, the maximum (o __ x) and minimum (O_in) base

line stresses, material parameters and so on. 

With the base-line stresses and material characteristics as para

meters, the delay interval as a function of 0 0 and t can be given 

in the general form: 

(1) 

We assume that the expression for the stress intensity factor and the 

crack propagation law are known 

(2a) 

(2b) 

where K-the stress intensity factor, 0 the applied stress, t crack 

length, and 6K and 60 - the stress intensity and stress ranges of the 

base-line load respectively. 

Integration of equation (2b) yields the time-dependence of crack 

length 

( 3) 

Accordingly, the individual delay interval can be presented in terms 

of the crack growth time, namely, equation (1) can be written as 

(4) 

We subdivide the time interval of crack growth (O,t) into two sub-
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Fig. 1: Schematic representation of crack retardation process: 
Overload moments designated t 1 , t2 ••. t~ 
Interoverload times designated '1' ... ,. 
Delay intervals designated 6td1,6td2 .• :6td~~1 
(T£ - time interval between last overload and 
observation moment t) 
(a) - Base-line constant-amplitude cyclic load with 

superimposed random overloads. 
(b) - Time dependence of crack length. (Dashed line 

supposed crack growth behaviour in the absence of 
overloads). 

(c) - Effective (curve 1) and delay (curve 2) times. 
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intervals: effective time t p and total delay time to (see Fig. 

lc). 

The total delay time, being the sum of the individual delay 
intervals, represents that part of the total time which is "lost" in 

terms of crack growth; thus, effective time is that of active crack 

growth under the base-line load as if no overloads occur. 

Combination of equations (4) and (5) yields 

(6) 

which indicates that at an arbitrary moment of observation t the 

individual delay interval depends on the total delay time at that 

moment, irrespective of the history of the process. 

Considering the total delay time as a random process due to the 

random nature of the overload moments, material parameters and so on, 

and using the Markov property implied by equation (6), stochastic 

model representing the delay process as a purely dicontinuous Markov 

process was developed [17,181. It was assumed that individual delay 
intervals can be considered as jumps in the delay process, for which 

transition probabilities are obtainable from the Kolmogorov-Feller 

integro-differential equations [191: 

a F (to, x ; t , y) ( ) ( ) d ( ) at =-qF to;x;t,y +qfP t,z,y F t ,x;t,z 
n Z 0 

(7a) 

p=q"lIt+O(lIt) (7b) 

where F(to,x;t,y) is the transition probability, (i.e., the proba

bility of the total delay time td being less than Y at moment t, 

provided that at moment to<t td=x); p - the probability of over-

load occurrence during time interval lit (approximately equal to the 

base-line cycle time), q - the overload intensity, and P(t,z,y) - the 

conditional probability distribution function, defining the probabi

lity of td being less than Y subject to the overload occurring at 

moment t and just before the overload td=Z. 
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In the first version of the model [17] it was assumed, by virtue 

of infrequency of the overloads, that the individual delay intervals 

are smaller than the interoverload times. In such a case, bearing in 

mind equation (6) 

(8) 

At the starting moment to=O and x=O, and the initial condition 

can be formulated as 

o for Y~O 

limF(O,O;t,y)=F(O,Y)=E(O,Y)={ 

t->O 1 for Y>O 

where for simplicity 

F(O,O;t,y)=F(t,y) 

(9) 

(10 ) 

Equation (7a) can be solved numerically by a simple step-by-step 

procedure, with equation (9) stating the initial condition [17]. 

The first version of 

values of the overload 

the model may be nonconservative at high 

intensity parameter q (high frequency of 

occurrence) since in that case interoverload times may be comparable 

to or even shorter than the individual delay intervals. 

The second conservative version of the model [18] preserves 

conservativeness of the reliability assessment even at high values of 

q. According to this version each individual delay interval equals 

~td as per equation (6) only when it is less than the interoverload 

time T. Otherwise, the value of td is truncated so as to equate 

the individual delay interval to T By this means overlapping of 

individual intervals is eliminated. This leads in turn to some 

underestimation of the total delay time and imparts conservativeness 

to the reliability assessment. 

The dissimilarity between the two versions manifests itself in the 

structure of the conditional probability function P(t,z,y). Since in 

the second version individual delay interval £td is identified with 

the smaller of two random values (~td,T), the function has the 

structure 

(lla) 
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for 

(lIb) 

where P1 is determined by equation (8), and 

(12) 

FT (0) being the probability distribution function of the inter-

over load time. Thus, using P(t,Z,y) from equation (8), or for high 

q - equation (lla), the whole array of transitional probabilities 

F(t,y) can be determined by simple step-by-step procedure embodied in 

equations (7a) and (9). 

We define reli~bility as the probability of nonfailure within a 

given time interval (O,T). Failure occurs if one of the following 

two events takes place during (O,T): (a) a crack growing under the 

base-line load reaches critical length for maximum base-line stress 

o~_x, and (b) at least one of the overloads has stress magnitude 

o~ sufficient for the current crack length to become critical, thus 

causing unstable fracture. 

According to equation (2a), the critical crack length for a given 
stress magnitude is obtainable from equation 

i 0,1 (13) 

is the the fracture 
toughness of the material the index 0 refers to an overload and 1 -

to the base-line load. Recalling equation (4) the critical time 

required for the crack to reach critical length is obtainable as 

follows 

; i=O,l (14) 

Failure does not take place when the following two events coincide 

(lSa) 

Ifor none of the overloads tp~t~; tE(O,T)} (lSb) 
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As was shown previously [17,161 the probability of the first event is 

(16) 

Let us now consider inequality (lSb). An overload causes failure 

when the 
(2) its 

length. 

(7b) is 

following two events coincide: (1) an overload occurs, and 

random magnitude o~ is critical for the current crack 

The probability of the first event according to equation 

q6t. Combination of equations (13) and (14) yields the 

following expression for critical time as function of the overload 

stress o~: 

( 17) 

If the probability density function W1(O~) of o~ is known its 

counterpart for t~ (W2(t~» is obtainable with the aid of 

equation (17). Accordingly, the probability of o~ being critical 

can be given in terms of the effective and critical times 

tomax 

P{tJ?~t~I=! P{t-td~X /t~=xlw2(t~)dt~ 
tomin 

Equation (18) can be rewritten as 

P(tJ?~t~I=! F(t,t-t~)w2(t~)dt~ 

tomin 

(18) 

(19) 

and the probability of an overload causing fracture (or, to coin a 

term, of its being "damaging") can be found as the product 

or 

0(t)=(q-6t)-! F(t,t-t~)W2(t~)dt~ 

tomin 
(20a) 

(20b) 

where q1(t) is the time-dependent intensity of damaging overloads: 
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(20c) 

Thus, for Poisson flow of overloads, the probability of nonoccurrence 

of a damaging overload during the time interval (O,T) is 

T 
Pd=exp(- Jq:l.(tldt) 

o 

( 21> 

Reverting now to equations (15a,b) and bearing in mind equations (16) 

and (21) the probability of nonfailure during the time interval 

(O,T), or in other words the reliability can be formulated as follows 

T 
R=(1-F(T,T-t:l.»·exp(-J q:l.(t)dt) 

o 

and if the overloads do not cause retardation, 

T 

R=(1-E(t:l.,T» 'exp(- J q:l.(tldt) 
o 

o if T<t:l. 

where E(t:l.,T)={ 

Here it should be borne in mind that for YsO F(t,Y)=O. 
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1. INTRODUCTION 
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One of the major problems which has to be carefully considered 
when applying reliability methods to the design of marine structures, 
is the time varying effects induced by random process loads. 

The response of marine structures to random process loads, such as 
the environmental loads induced by wave, wind and current, is impor
tant not only in terms of dynamic behavior but also, and perhaps 
mainly, of load combination. 

It is relatively simple to take into account this problem when it 
is possible to include all time varying effects in only one load 
variable, its extreme value, defined for a suitable reference period 
[O,T], being sUbstituted in the failure equation, thus transforming it 
in a time-independent form. 

Similar conclusions may be obtained for random processes which 
appear to be physically independent, by applying the Turkstra rule 
/1/. 

The problem discussed in this paper arises when more time varying 
loads act simultaneously, thus having to be considered as components 
of a vector random process. 

This is often the case of marine structures. An example relevant 
to ships is the problem of the combination of the vertical and hori
zontal bending moments required in the reliability analysis of some 
ship components. Another example, relevant to offshore structures, is 
given by the wave forces on the joints of a jacket, which may be 
considered as components of a vector random process. 

The evaluation of failure probability of structures subjected to a 
vector random process load, obtained by applying standard reliability 
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methods, is not straightforward. 

The extreme distributions of each load component are no longer 

sufficient alone because, in general, the most probable failure does 

not occur when all components reach their extreme value at the same 

time /2/. In the case of a stationary gaussian vector random process, 

further information on the correlation between the vector process and 

its derivative are required. 

At the moment, two possible solutions are known for stationary 

gaussian vector process loads. One, called here as the dummy variable 

technique, transforms the problem into a time-independent form, 

suitable for FORM or SORM procedures, by introducing a fictitious 

variable which includes all time varying effects. 

The component failure probability may be successfully evaluated by 

defining the initial distribution of the time-independent variables 

and the extreme distribution of the dummy variable, obtained at each 

step of the iterative procedure as the outcrossing of a suitable sta

tionary gaussian process /3/. 

The other very interesting solution is obtained by applying 

recently developed theories which define an upper bound of the failure 

probability as the mean outcrossing rate from a safe domain of a sta

tionary gaussian vector random process, evaluated by means of 

asymptotic techniques /4/, /5/, /6/. 

In our view, a crucial point for potential applications of reli

ability methods to marine structures is the development of reliability 

based codes. 

The problem is to identify a set of partial safety factors for a 

specified class of marine structures which can be considered invariant 

with respect to the life of these structures. These factors have to be 

applied to the notional deterministic values of the load components, 

or a suitable combination of them. 

The present possibilities of evaluating partial safety factors of 

load components are significantly different with regard to the two 

above-mentioned techniques. 
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Using the dummy variable technique it is possible to evaluate cor
rectly the probability of failure, the design values and partial 
safety factors of time-independent variables but it is not possible to 
separate the effects of each load component contained in the design 
value of the dummy variable. 

On the other hand, the probability of failure evaluated by means 
of mean outcrossing techniques is based on initial distributions both 
of time-invariant variables and time varying ones. 

The use of initial distributions reveals the possibility to define 
the design points of time-invariant as well as time varying load 
components, which cannot be defined by the dummy variable technique. 
Furthermore, these design points, being obtained by initial instanta
neous distributions, do not depend on the life of the structures. 

The point is whether these design values may be used for the 
proper definition of partial safety factors of load components and in 
particular whether the use of initial distributions instead of extreme 
ones considerably shifts the safety content from the capability to the 
load. 

A first attempt to clarify this problem will be discussed in this 
paper by comparing the partial safety factors of time-independent 
variables obtained by initial and extreme distributions for the 
tripping collapse of a deck girder, already considered as a typical 
example of component reliability analysis of ship structures /7/. 

2. DIRECT EVALUATION OF FAILURE PROBABILITY 

The problem referred to here is the evaluation of the probability 
that a structural component of a marine system subjected to vector 
random process loads fails during its life. 

Such a probability may be defined as the probability that the 
failure equation is less than 0 at least once during the reference 
interval [O,T] 
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a.l.o. [O,T]} ( 2.1) 

The failure equation may be defined as 

(2.2) 

where ~ is a vector of basic random variables and X(t) is a vector 
random process which includes all time varying load components. 

A first method for determining the component failure probability 
by FORM or SORM procedures is based on the definition of an additional 
ran.dom variable, with cumulative distribution 

1 - p a.l.o. [O,T]} (2.3) 

The failure probability suitably defined for application of FORM 
or SORM procedures becomes 

(2.4) 

The normal standard variables ~ are obtained from the basic physi
cal ones ~ by the Rosenblatt transformation. In particular, for the 
additional dummy variable un+1 the transformation is 

un+l = ~-l [ H (~I~) ] (2.5) 

The conditional extreme distribution H (~I~) is obtained by the 
equation (2.3), making the vector of basic variables ~ equal to the 
deterministic values ~ , obtained at each step of the iterative proce

dure. 

The evaluation of this conditional probability is obtained as the 
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mean outcrossing rate of a suitable stationary gaussian random vector 
from the region gl[~,X(t)] approximated by hyperplanes /8/, /9/. 

An alternative point of view is given by the following definition 
of failure probability /S/ 

(2.6) 

which involves as upper bound the initial failure probability Pf(O), 

the mean outcrossing of the vector process from the safe region ~f and 
the reference interval [O,T]. 

Initial failure probability is often considered negligible with 
respect to the time-dependent one but it may be evaluated using 
standard FORM techniques. 

Very interesting asymptotic techniques for the evaluation of the 
mean outcrossing rate of a gaussian vector process have recently been 
developed for convex surfaces bounded by hyperplanes and even for 
intersections of failure domains, necessary for the analysis of redun
dant systems /6/. 

As an example, the mean outcrossing rate for a hyperplane at a 

distance ~ from the origin is /10/ 

1~1J1(~) 
V 2n 

(2.7) 

This formula shows the dependance of the outcrossing from the 
safety index ~, the vector of direction cosines ~ at ~-point and the 
covariance matrix between the process and its derivative i. This 
result is quite general also for more complex failure surfaces. 

The comparison of the failure probability obtained by the dummy 
variable and asymptotic techniques is still under review, although the 
two results are expected to be quite similar, at least for large ~-s. 
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3. DEVELOPMENT OF A PROBABILISTIC BASED CODE 

Our basic interest is the application of reliability methods to 

develop probability based codes for marine structures. This means 

adjusting a set of suitable partial safety factors for an appropriate 

class of structures on the basis of reliability calculations. 

A target safety level is met if the design check is fulfilled by 

using, in the failure equation, the notional deterministic values R 
corrected by the partial safety factors t 

(3.1) 

For the sake of convenience, the partial safety factors are 

defined as the ratios between the design and the notional values of 

basic variables 

X*. - Xi 
ii = l. 

Xi 
(3.2) 

In the case of structures subjected to vector process loads, the 

development of a reliability based code is faced with a series of 

problems still partially unsolved. 

One of the most important is the invariance of partial safety 

factors with respect to the life of the structure. Below, the results 

obtained by extreme distribution for different reference 

time-intervals [O,T] or by initial distribution are compared. 

Figure 1 shows a simple case of a resistance random variable Rand 

a single component random process L. 

The safe region is bounded by the failure equation obtained by 

instantaneous (initial) distributions (small line) or by an extreme 

distribution of the load (broad line). 

For a non-stationary load process, the bound obtained by initial 

distributions moves with time, whereas for a stationary process it 
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remains unchanged. The bound obtained by the extreme load distribution 

is different when the reference interval [O,T] changes. 

Assuming that the design point, in both cases, is the point 

closest to the origin, the direction cosines at this point signifi

cantly change if obtained by initial or extreme distributions. There

fore, the resistance and load partial safety factors significantly 

move from the resistance to the load if initial distributions are used 

instead of extreme ones. 

4. ILLUSTRATIVE EXAMPLE 

This qualitative consideration is confirmed by the results of a 

numerical example of the tripping collapse of a deck longitudinal 

girder of a conventional tanker. This example was studied in detail 

during the work of the last ISSC Committee V.2 on Applied Design /7/. 

The results were obtained by a procedure based on FORM techniques, 

which is able to evaluate the reliability, in terms of safety index 

and design values of basic variables, of a component of a linear 

marine system. 

This procedure requires, as input, the response amplitude opera

tors of time varying effects for the sea-states considered in the 

analysis. For each sea state, the stationary gaussian random process 

load components are fully described by the following covariance 

matrices 

R E [YiYj ] = ( Hi(W) H* . (w) Sew) dw = ~ 
0 

(4.1) 

. . 
[(iW R E [YiYj ] Re Hi(W) H*j (w) Sew) dw ] 

= 0 
(4.2) 

where Hi (w) is the response amplitude operator and sew) is the wave 

spectrum. 
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Long-term results are obtained by evaluating the convolution 

integral over all the sea-states. For the sake of simplicity, in this 

example only a single sea state has been considered, with significati

ve wave height 7.5 m and mean period 10 s. 

The array of time-independent basic variables ~ has the 24 compo

nents shown in table 1. Vertical Mv and horizontal Mo bending moments 

are the two components of the stationary vector random process ~(t). 

The failure equation for the tripping collapse of the deck girder 

is defined as 

o (4.3) 

where C accounts for ultimate tripping capacity, Wv and Wo are the 

vertical and horizontal section modulus, Msw is still water bending 

moment and Xv and Xo account for uncertainties in the vertical and 

horizontal wave bending moment. 

Extreme distribution results have been obtained for several refer

ence intervals [0, T 1, by applying the dummy variable method and 

ignoring initial failure probability with respect to the 

time-dependent one. 

On the other hand, initial distribution results have been obtained 

by considering the vertical and horizontal bending moments as two 

additional basic variables and by applying the following Rosenblatt 

transformation 

{ :: 1 = 
(4.4) 

where A and B are the eigenvector and eigenvalue matrices obtained as == .= 

a solution to the following problem 
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~ ~T = ~-1 (4.5) 

The safety indices 13 obtained for reference intervals from 20 

years to 1 hour and for the initial distributions are given in Figure 

2. Obviously, the safety index decreases by increasing the 

time-interval and the initial distribution value is considerably 

larger than the value obtained by the extreme one. 

What is interesting with regard to this discussion is the compari

son of partial safety factors of basic variables, normalized with 

respect to the safety index 

I 

t i = 
X*. - X. 

l. l. 
(4.6) 

The results in table 2 show that normalized partial safety factors 

which have noticeable values change significantly when obtained for a 

20 year reference period by extreme distributions or initial ones. 

The highest value refers to still water bending moment. This is a 

well known problem, because its high standard deviation is due to the 

high scatter in the ship' s loading condition documents. 

Other variables, such as yield stress, the residual stress coeffi

cient and the various model uncertainties, reflect the same difference 

in the partial safety factors obtained by the initial and the 20 year 

extreme distributions. 

5. CONCLUSION 

The study presented in this paper is at a very preliminary stage. 

However, even though results of the previous example are incomplete 

there are still doubts about the application of reliability techniques 

in the development of reliability based codes for structures subjected 

to vector process loads. 

In particular, the p~tial safety factors, also of 
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time-independent variables, obtained by initial distributions seem to 
be inconsistent with respect to the ones obtained by extreme distribu
tions. 

Mean outcrossing rate techniques which seem so interesting for 
direct procedures, are based on initial distribution and so may lead 
to an inaccurate definition of the partial safety factors. 

This conclusion has been reached by considering the design point 
as the point closest to the origin also for the initial distribution 
calculations. 

This is not, in principle, required by mean outcrossing techniques 
and there are suggestions for choosing a different expansion point 
from which the vector process crosses the safe domain /10/, /11/. 
However, from the results of this paper, the choice of the point has 
to be closely connected to a consistent definition of partial safety 
factors. 

The most suitable reliability procedure able to correctly take 
into account the time-invariant basic variables and the load compo
nents of a vector random process, which for long-term analysis are in 
general non-stationary and non-gaussian, is a philosophical problem 
still only partially solved with regard to the extensive use of 
reliability methods for the analysis of marine structures subjected to 
time varying effects. 
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3.834 
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CL.1/4 PLATE THICKNESS 
CL.Z PL. THICK. - CL.I> STIFF. FL. THICK. 
eL.3 PL. THICK. - (L.I> STIFF. WEB THICK. 
CL.l STIFFNER WES HEIGHT 
CL.2 STIFFNER WEe HEIGHT 
CL.3 STIFFNER WES HEIGHT 
CL.I> STIFFNER WEB HEIGHT 
CL.7 STIFFNER WEB HEIGHT 
CL.1/7 STIFFNER WES THICKNESS 
CL.Z/3 STIFFNER WES THICKNESS 
CL.Z STIFFNER FLANGE WIDTH 
CL.3 STIFFNER FLANGE WIDTH 
CL.6 STIFFNER FLANGE WIDTH 
CL.7 STIFFNER FLANGE WIDTH 
CL.2/7 STIFFNER FLANGE THICKNESS 
CL.3 STIFFNER FLANGE THICKNESS 
YIELD STRESS 
YOUNG MODULUS 
POISSON COEFFICIENT 
RESIDUAL STRESSES COEFFICIENT 
STILL WATER BENDING MDMENT 
MOOEL UNCERTAINTIES ON STRENGTH 
MODEL UNCERTAINTIES ON VERTICAL HOMENT 
MODEL UNCERTAINTIES ON HORIZONTAL MOHENT 

a O.01S~. 

• 0.0160 
0.0125 

, 0.2300 
• 0.4000 

0.3000 
1.6940 

• Z.S300 
0.0150 
0.010S 
0.1200 
0.1000 
0.1300 
0.2S00 

• 0.0230 
= O.014S 
• 230.000 
• 206000.0 
• 0.3000 

0.7500 
137.000 

• 1.0000 
0.9500 
0.8500 

Table 1 Mean values of basic variables 

NORHALIZED PARTIAL SAFE TV FAc:TORS (XS-XH)/(XHISETA) 

20 VS 10 V5 1 Y I> HS 1 H 1 H INIT • 

SETA 3.558 3.634 3.897 3.980 4.~04 5.137 6.556 

X 
1 -0.001 -0.001 -0.008 -0.008 -0.008 -0.008 -0.001 
l -0.002 -O.OOZ -0.002 -0.002 -0.001 -0.001 -0.001 
3 -0.002 -o.on -O.OOl -0.002 -0.002 -0.002 -0.001 
4 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
5 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
6 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
1 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
8 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
9 -0.006 -0.006 -0.005 -0.005 -0.005 -0.004 -0.004 

10 0.000 0.000 0.000 0.000 0.000 -0.002 -0.001 
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
12 0.000 -0.001 -0.001 -0.001 0.000 -0.001 0.000 
13 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 
14 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
11 -0.033 -0.033 -0.033 -0.033 -0.033 -0.033 -0.029 
18 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.001 
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
20 -0.043 -0.043 -0.042 -0.041 -0.039 -0.035 -0.028 
21 0.916 0.979 0.987 0.991 0.991 0.989 0.856 
22 -0.015 -0.015 -0.015 -0.015 -0.015 -0.014 -0.012 
23 0.038 0.038 0.036 0.035 0.034 0.027 0.021 
24 0.048 0.041 0.045 0.044 0.042 0.014 0.026 

Table 2 Normalized partial safety factors for different 
reference intervals and for initial distributions 
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REUABILITY ANALYSIS OF DISCRETE DYNAMIC SYSTEMS 
UNDER NON·STATIONARY RANDOM EXCITATIONS 

Tadeusz Chmielewski 
Technical University ofOpole, 45-951 Opole, Poland 

DlrROllUJTION 

In this paper we shall describe an approach to the study the relhbl

li tJ of atructurcs modeled as linear discrete dynamic oystelas which has 

been designed to 'Ilithstand nonstationarJ random excitatio~ .ve shn.ll 

discuss this problem upon consideration the following four steps: 

1) The description of an input space F, an output space f. and a linea.r 

(Ii?" ('!ltor of the syGtcm should be estilll_1.ted first. An equation of motion 

in a general sense takes form 

L Y (t) = f (t) , (1) 

',~hdre f (t)e.F, y (t)U and L - the system operator. The space Y should be 

t,~l~en such thilt any st'olte of the system could be considered o 

I.et us assume a complete kno·,,,ledge of the dynamic properties anu the 

initial ntate of a structure in a deterministic sense,but'the excitation 

1:' l t) 1;; rmdom. 

2) In the second step, the solution of the stochH.stic differential 

'-q1lation (1) should be fOW1d by the applic:ation of random vibration 

theory (3ee[1O,18,'31J). 

:;) In the third step one have to evaluate a quality space V \'IC1ich 

ehal'1.ctcl'ize the fluali ty of the system. So, fo,l." any sample fW1ction y (t) 

may b~ found :3. sample fW1ction v (t). The depenilence bet'lleen y (t) and 

v{t) can be written in a form 

v(t) = U ytt). (2) 

l'he lJ[Jcl':l.tor N should be prescribed for any specific structure. In wany 

C::l.;3;~3 for mech'lnical sJstems the 'Iu').li ty space 13 a subopace of '[. In 

this atep it io ir:;portant to prl'mcribe a tolarable domain D in the qua-
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lity space V. It should be done on the base of technological and econo

mical considerations for any given ·real structure. This domain is limi

tad by the bound surface S. 

4) The response of the structure under the random excitation will be 

random. too. Therefore. the answer to the question of reliability holds 

wi th a certain probability only. A formal definition of a reliability is 

as follows 

pet) = P(V(tl E D; o~r~t] , (3) 

where P means a probability that characteristic process V(t) of the 

structural response reI~ins within the prescribed tolerable domain D 

during interval (O,t). 

Let F, U and V are Euclides spaces. On the Fig. 1 sample functions 

f(tl, y(t) and vet) are sketched upon assumption that F, U, V are three 

dimensional spaces. 

F y V 

Pi g. 1. Examples of sample functions f (tl. Y (t). v (t) • 

In the follo~/ing chapters strong ground motion during earthquakes 

\/ill be considered as an example of nonstationary random excitations. 

A linear structure vlill be modeled as a system ;'lith n degree;.] of free

dom. Displacements, internal forces or the capacity of a cross section 

mq be taken as parameters of the system quality. 

3TOCHASTIC :,lOD3L OF 3.:!:ISIHC G:10UND HOTION 

:hrthquakes are typically random in nature. One cannot tell "/hare, 

whan <md 'dith ',/hat intensity next quake .. rill happen. No two earthqualce 

are alike. The mechani.sm of origin is not unique. Tha diffrent types of 
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earthquakes vl'3.ves are often reflected and refracted on their way from 

the epicenter to the site. '1'herefore, the excitation process seem like 

an irre,~ular motion. 

l'he ranilom nature of the quake requires a random model for the mathe

au tical description of the acceleration process. This model must be in

fluenced by the soil properties of the site and must include all past 

information. Various probabilistic models of strong ground motions durinG 

<larthquakes ha.ve been proposed (see [,~, 5. 5,12, 28,34J). '1'he8e investi

ga.tion ledto a commonly accepted model of uniformly modulated random 

process, representing the horizontal ground acceleration, as follows 

1~ (tl = A (t)'~ (t) , (4) 

where A(t) is a deterministic envelope imposed on stationary process [(tl. 

30me envelopes have been proposed in the literature (see G. 4, 5,29J1 
~<ample3 of a few will be presented in next Chapter, but the Amin's and 

Ang's seems tte most suitable (see [1]). 
The stationary process f(t) can be characterized by the I~nai-Tajimi 

spectrum (see[15,33]) 

[1 + 41,2 (wi w )2] 3 
g g 0 

(5) 

Wl:81'e W and ~ are parameters reflecting local site conditions, whereas 
g g 

J are related to earthquake intensity. 
o 

DYNAMIC R,;;SPONS.8 OF DI3CR8'1'.r; S[STEt1S 

Note on the peak factor 

'1'he empln.sis in this ancl next paragraphs is on the use of random vi

brations theory to predict the response of structures to earthquake 

ground motion. Random vibrations analysis has its aim the prediction of 

the probability distribution of a dynamic response parameter of interest 

in terms of the dynamiC properties of the structure and a statistical 

description of the earthquake. It holds a clear advantage over other 

prOCedures in that they yield information about the distribution of 

Gtructural re.::;ponse, allov/ing direct assement of the probability of 
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excc")ding intorelable response levels. 

In this notes, the types of :Jyatem treated probabilisticJ.lly are 

linear ifiul ti-uegree-of-freedom systems. '1'he solution is stated in terms 

of the l'",:;po1l3e :In, p in ',·/hich the subscripts refer to an exceedance 
~ , 

probabili ty II a.nd the strong-motion duration T. f11e response is expressed 

8.S follo\"s 

'.I11et'e (j ('1'1 
y 

(6 ) 

standard deviation of the linear system rel,ponS8 at time 'r, 
peak factor vlhich relates standard devtation to the res

ponse level not exceeded vlith probability p. 

;\ general approach to estimating the peale factor r,l',p for linear 

llyste:n,3 is described in next Chapter. 

l'roblem statement 

Consider a genera] multi-degree-of-freedom system represented by the 

f:tmili:J.r' time invC),riant mat:L'i;{ equation of motion 

[ B] { ~i} + [c ] {i} + [,(] { {} = {F (t I] 
wi!;h the follOl"ing initial conditions 

ii/herd 

{ 1 (OJ} {[oJ , { t (OJ} = { to} , 

{F (t)} {F1(tl, r'2 (t 1 , , F (t )}'f 
n 

-[ H]{ 1} f 0 ( t 1 - the effective 

force, 

(8) 

vector earthQuClke 

displacement 

vector, 

'1' 
{ } - denotes transpositions of vector, 

[E], [e], [K] - mass, damping and stiffness matrices 

respec tively. 

l'he General solution of eQuation(7) can be vlritten as 
t 

{l(tl} {yI(tl} + j[h(7:I] {F(t-7:J} dt (9) 

o 
The firs t honogeneous solution reflects the initial B ta tes. Vlhereas the 

effect of the externally applied forces is represeYlted by the Gecond 

particular solut.ion in terms of the lIla trix of inr;lUlse response func-



www.manaraa.com

49 

tions [h ('t'J]. 

'.ehe m03t geneFd.l stoch3.stic problem can be formulated as follows. 

Take a. set of randomly chosen initial states and evolve them concur

rently under the action of random forcing functions. '1'he purpose of thilJ 

ana.lysis is to find out the solution of such a problem for statistical 

prop~rtie3 of the response vector; for consiseness advantage will be ta

ken of matrix notation (see[9J). Denoting the operator of mathematical 

expectation by< >, the mean displacement can be written as 
t 

<{qtl}> =<{II(t)}> + 1 [h('C)] < {t'(t-t)}>dt (10) 
o 

:3ubstracting equation (10) from equation (9), the fluctuating displace

:ncmt ca:1 be expressed in following form 

t 
{y(tl} = {let)} + 1[h('I:)] {f(t-L)}d'!: (11) 

o 
in '."hich the fluctuations {y(tl}, {yI(t)} and (f(t)} are defined by 

{y(t)} = {i(t)} -<{qtl}>, {yI{t)} = {yI(t)} _<{yIlt)}> 

and {fIt)} = {F{t)} -<{F(t)}>. 

'1'he influence of the fluctuation {yI(tl} is given in reference [10] 

and '.vill not b" considered here. The {y (tl) moment of any order can be 

expressed in terms of the moment of {fIt)} • Since equation (11) is li

ne').!', the {y (tl} - moment "lould involve the {f (tl} moment of the same 

order. '.ehe nntrix of variances of the response [Dr} ( til may be expressed 
,y T 

in terms of the covarLlnce ma.trix Dcf (t1 , t 2 )] =<{ f (t1l} {fif( t 2)}' > (aste-

ri3k denotes complex conjugate) in the follov/ing form 
t t 

[J{Y} (t)] =J j[h('C1l][Kf(t-t1,t-t2)][h('l:2)] T dt1dt2 ' (12) 

o 0 
where ['1 T _ denotes trans position of matrix. 

'1'he time domain equation (12) i3 valid for any arbitrary physical random 

processes and taking into account the stationary response {y (t)} to sta

ti.onary excit::J.tion {'f(tl} one can obtain its frequency-dornain form, more 

convinion t for practical computations (soe [10,18]) 

(15) 
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I/here is the rna trix of frequency re3 ponse flmctions, [a (wl] 

[J {f}(Wl] ill the matrix of the pO'tler spectral density functions of 

the stationa,ry excitation vector {7 (tl} 

Input - output relations using evolutionary spectra. 

'rho actU::ll time integra.tion of equation ('2) is very tedious, although 

it involves only trivial cOlilputations. 'l'his complication lna.y be circum

vented by usinG the Pourier-3tieltes representation for nonstationary 

r'm-ioril IJrOCesses, first introduced by Priestley [23,24J. Furthemore ap

pl.ication of spectral description of random processes leads to relations 

h.vinG clear physical interpretations. Assume, that {fIt)} can be vlritten 

ill for;2 of the spectral representation 

Co 

e iwt r-JA (t,w) df,(W) 
_ .... 1 

00 
iwt fA (t,w) 

r-
e ll:t"2{wl 

_Q) 2 

{f(tl} (14) 

00 
iw-t fA (t,w) 

A 

e df Cwl, 
",n n 

where A (t,w) , k=1,2, ••• ,n are slowly varying .leter;ninistic functions 
k A 

of time t and frequency wand symbols fk (w), k=1,2, ••• " ,n, stanu. for 

orthogonal rJ.nilom processes in freq,uency dorrnin " ... i th zero mean ani the 

j)roperties: 

( 15) 

Ortho[,;onl.lity of increment.) of two different processes is also assumed, 

i.e.: 

In eqlX1tions (15) and (16) Sj{w) and Sjk(w) denote auto and cross power 

3)8ctral density functiona, in stationary sense, of vector random pro

cess {I(tl} ({f(t)} = {fIt)} , v/hen "\(t,w)= 1 for lc=1,2, ••• , n). 



www.manaraa.com

51 

The introduction of the vector orthogonal representation (14) into 

t:le second component of equation (11) gives 

\"hare elements 

... 
{y (t)} = J [M(t,W)] eiwt {df(W)} , 

-CD 

of matrix [M(t,W)] are given by following formula 
t ( ) J ( ,.J -iwt 

Hjk t,CAl = hjl('t') Ak t--",w) e dt , 

o j= 1,2, ,n 

k= 1,2, ••• ,n 

and h. (t) - elements of matrix of impulse response functions. 
J Ie 

(17) 

(18) 

(19) 

l~'luation (17) can be used conveniently to find the joint cumulant func

tions of an] order of the response. For example the covariance matrix 

can be derived as follows 

(20) 

= J fl'l (tl ,w11] 
-CIO-CQ 

l'3.kin~ into account the equation (1:';) and (16) one obtains 

'1'he integrand in equation (22) represents the matrix of evolutionary po

-":er spectral density functions of the response (denoted by [S{y} (t,w)1 ) 

[S{y}(t,w)] = [r4(t'W)][S{f}(W)]~'1·(t,W)] T. (23) 

It i3 interesting to note tl~t when the excitation vector {f(t)} is 

stationa~i, then Ak(t,w)= 1, k=1,2, ••• ,n,and limits of integration in 

(18) are infinite. In this case M (t,w) = H (w), hence equation (22) 

reduces to tne known equation (13) for stationary processes. 

Before closing it must be noted that practical estimation of the mo

d.ulating fWlctions Ak(t,w) required in equation (18) is faced with dif-
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ficulties unless the components of excitation vector {f(t)} are unifor

mly modulated random processes (see[1G,52,3i3] )i.e.: 

(24 ) 

k= 1,2, ••• ,n 

f (t) = A (t) 1 (t), 
k k k 

(25) 
co ,.., 1 iwt " where fle(t) =_ e dfk(w) are stat:LI)l13.ry random proce3ses. '-,uch the 

sinplii'ic:l.tion rrny however be aSHUIDed in ma.ny enGineerinG problems. 

'["-Io-decree-o f-freed',lm sy" tem examille 

Gon::::ide,t.' a system \"lith two degrees of fr(ledom which is excited by mo

ti.on of the fOUl1tiation (Figure 2). 'rhe ::Jatri;{ equation of motion of the 

~jstem is as follows 

'oN.,er,} vector {y} ']c)J1otes the rela.tive displJ.cel!lents of 'l8.:3;'efl m1 and ffi2 • 

;';,)rma.l mod," "'-lulY8i3 give:; u:;.tural frequencies of the systel:'! 

".. / "" / k; .. ? ( /) 2 w = 2 Ju rad s, w" = 4 J~ rad s, for m = 8)\' ::: . .l.d s . 
1 '-

tinder tele ::l3GWnption that dampine; ill3.trix i3 a linear combination of 

ZflL~:S 'IHtrix,':md stiffness llutrix, the matrix of impulse response func

tions l113.j be calculated on the ground of solved eigenproblem, [10J. The 

c:::.lcula.tions yield in this example 

11 (t) ~ [* tJ e - ~ w1 t sin w 1 t 
mW1 1 l 

J 3 

Wj Y1-i,r, j =1,2 
- modell damping parameters, 

IJhere: Wj 

;j ;1=~2 = 0,05 in the present exam-

ple. 

It is aSl3Ulned tha.t the excitation process f (tl 1s uniformly modula
o 

ted ran:iom process 

f (t) 
o 

o (28) 
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Gonsi([er the 13tochastic res,)on~;c of the S.l'_clteJl1 (26) under asuumption 

lll:::..t pow'or spectral density of tho process f (1;) is descrlbeJ by the fo1'

l!lULl ('5) .. .fi th the parameters as 
2 

W = 15.6 radis, t = 0,6, 3 = 4.65 • 10-4 m / 3. 
g "c 0 s 

'J:he envE;lopes A (t) may be aS3umed as follows: 

o for I; <0 

A(t) 

( 1 )2 
t1 

for o ~ t <t1 

1 for t1 ~ t (t" 
t:.. 

3s, 

e - fo(t-t) 

t = 7s, 
? 

./3= 0.2 

A (t) = 1 for tE(-OO,oo} 

·rhese envelopes are shown in Figure 3 

for t ~ t2 

for t (0 

fort; ~ 0 

for t < 0 

for t ~ 0 

(29) 

(50) 

(31 ) 

(32) 

rhe ,rn,tri:< of station.:J.I".f power spectral density functions has in this 

e;c~mple follovTing form 

(33) 

'rhe elelnGnts of !U'.l.trix N(t,w) have been calculated uSingjequation 

(1'3). He::lUlts for evolutionary povler spectral density ructions of dis-
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il1acements y 1 and y 2 calculated using equation (23). are plotted in 

Fi6ures 4a and 4b. respectively for the envelope (30) and; 1=;2= 

=J.J5. l"or the bottom m:.tss, as can be observed, the concentration of the 

spectral density about tile natura,l frequencies is more distinct than for 

the upper on'~. Figure 5 presents the standard deviations of the displa

cement Y1 and Y2' obtained by applying equation (22)0 

m2=m " I 
/ 

k2= k C2 
i 

i 
m1=2m P 

.I 

Fig. ? A t<N'O degree of freedOl:J tlystem 

A(tl 

0 2 

Fig. 3. '2lvelopes ........ 

_!_-_.-
- - --

, ... , .... ,,~.-.-.-. _._-_._._. 
' . ... o. 

' . 

4 6 8 

et]" (29) 

e'l, (30) 

eq, (31) 

eq, (32) 

...... 
' . 

10 

.... ........ ...... 

12 14 16 
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(a) 

25 

A~ 
o 

o 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 15 

Fig. 5. 3tandard deviation of the response of the two degree of 

freellom system for envelopes (30), (32) 

and 

(::.1 for; = 0,01 

(b) fol' ~ = 0,05 

t[s] 
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.\S~ISl.nC Rl!:LIABILITI AND ll'IRST - PASSAGr; FAILURE 

Cl~ssification of structures and earthquakes 

Various types of structures have to \>/ithStand earthquakes. In regions 

"l'Ihere strong motion. earthquakes are rare events, only special structures 

are designed under this load, e.g. po'tler plant system, dam:J, broadcas~ 

ting transmitters, etc.:lhen the structure is a very complicated, it can 

be ,livlded into the main structure, the so-called primary structure, and 

aubstruc tures, the so-called secondary structures. 

'1'0 the structural designer, the only purpose in studying seismology 

is to enable him to predict the characteristics of the earthquake input 

for ~'hich his structures should be designed. In order to deal effectively 

with the combinations of extreme loading from earthquakea and low proba

bility of its accurance, a strategy based on dual deuign criteria usually 

is ;·J.clo pt ad. 

:l!'or eX3.!lple, \/i th nuclea.r pm-/er pla.nt system:J two diff"erent types of 

"deSign earthquakes" are usually considered. First, an operatory basis 

aarthquake (0131.\ 1 is considered. It is a moderate earthquake \'Ihich reaso

nably may be expected during the life of the structure and must not en

danger tIle operation of the power plant. Second, a .. afe shutdown earth

quake (:;34) is consirlered. It is the most severe earthquake \'Ihich pos

sible could occur at the site and is applied as a test of the structural 

s1.fety. It is not expected, that the "/hole plant including all main and 

au:dliary equipment will survive the quake without damage. But it must 

be demanded, that a shutdO\m of nuclear system is quaranteed 'tli thout any 

da.nger for the aurroundings. 

)efini tion of reliability and first passage failure 

'rhe ultirI13.te purpose in probabilistic structural analysis to earth'i' 

quakes is to be able to judge the reliability of a structure which has 

been designed to "/ithstand these excitations. Let Y (t) be the nonstatio

n'3.l'Y dynamic retip0113e (either a deflection, a strain, or a stress) at a 

critical point in given structure. 

A structure will be called reliable, if a clli~rasteristic value of the 
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3t:"'"wtural response Y (t) remains with a certa.in prob·:tbility v/ithin a 

pre:3'~ribed tolerable dorn::l.in D during the lifetilne 'fl of the structure. 

;!et'e, relia.bility means the probability of Jucce~w (one minun the pro

bability of failure) • . /e shall be concerned only with failures '.'/hich are 

the re:'lUlt from dyn3.mic response of stable hi6h structures. 

The prob3.bi1ity thlt the structure response Y ltl pas:Hls out of tJie 

preJcribed safety bounds of operation for the first tilne VIi thin a speci

fel time. interval, is called the first passage lor first-excursion) pro

ba.bility. It is ca.lled also first passage failure of the structure. 

1-1o'les of failure 

COill-:Jon to various methods of desi[91 of structures under static or dy

n.mic loa.cl is the assumption, that a specific value of the lIl'lXimurn stress 

or certain deformation must not be exceeded within the structure. In the 

stochastic-process theory description this situation as far as failure 

is cOlleerned is expressed as follows. 'de postulate that the structure 

\'/il] fail upon the occurrence of the following event: 

1.i(t):ceaches, for the first time, either an upper bound level ~1 or a 

10'Ner bound level -"2' "/here "1 and '>.2 are large posi ti ve numbers (see 

Fig. 6). General, in some cases it can be that "1="2 or '>.2=0. 

Other failure modes under nonstationa!"J random loadings is fatigue 

f:3.ilure. 

2. 'file structure is assumed to callapse under a specific stress level 

if :.I. cer.tain number of cycles has been reached. The reason for this mode 

01' failura li"s in mathematical deteriora.tion. 

3. Other ;'iJ.odes of failure are: static or dynamic instability, failures 

dUe to corrOSion, abrasion, etc. \tlhich are beyond the scope of this paper. 

t 
~;.r--r7--;--r------------------------

Fic:;. n. 'Ehs nO(1-f3jffietric doubL~ 'Ji.ded bOUll,lary for first passage 
pl'oblem. 
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Applying these considerstion to. the aseismic reliability problem it 

can be (!oncluded that: 

(i) the question of (mainly low cycle) faituge is interesting in the 

case of de:.;ign under OB~. In spite of a relatively small nwnber of quake 

.:uccesiye deterioration of the masonry or concrete may cause failu.re. 

But because of lack of information the actual importance of this feature 

!1.1.S not yet been cl.1.rifie(l. 

(ii) it is of primary interest to contlider the stL'ltc bure wluer strong 

,!lotion eJ.rthquake~}. In this case the criteria 1. is that of practical 

Lll:)Ort1.nce and the definition of the reliable structure is ju."ltified. 

It is further ac3sumed that the structural resistance to the first 

p'.w:,age Ll.ilure i3 deter:ninistic and it does not ch::m;.::;e with time, such 

tha t the :irescribed safety bounds, called barrier levels or threshold 

levelS, ace constants. 

~l.assifiC~l.tioll of first-passage pcoblems 

rhe ::'·ir.3 t [J3.SS3.e:e problem can be posed uncl.er various kinds of initial 

c.on·:itiol1':; (1:::\ 01:1: toler:~bl() domain (safety region) D. General, lie COrl-

sicifH' ,leter.:Jini3tic Ie, for eX:lrnple zero initial conditions or random IG. 

In application, t'.va different types of uom::l.ins D are usually met: 

(1) the ona-sided boundary problem -InC. 7 , 

(:» 'rll"l :Jyumetric double-siued boundary problem ( f:.Jr a symmetric proccss 

VIi th zero mean )-Fig.8. 

A lL-.. ________ .. t 
Fig. 7 .1'he one-s ided boundar'J pro blam. 

t 

-A~-----------------------------

Fi~. 3. 'rhe Gy;mnetric double-sided boundary problem. 
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First passage probability and prediction of pea}~ factor 

Generally speaking, the structural response '{ C~:, t) is a function of 

b,)th sp,1ce ;s ami time t. In order to eatimate the reliability I.e r..a.ve 

to find that specific point x in spi'l.ce, that gives the worst result. 
"'0 

Phe char3.cteristic value of the structural response is defined by 

f ( t) = Y (x , t) = Hlax Y (x, t ) . 
o ~-

The sec,md part of this relation holds only, if the barrier level 

of the safety domain D is independed of space. The problem hovi to find 

tho critical point x is not discussed herein, as it is well lmO\'1ll from 
""0 

,L::tel'IJinL,tic calculations. 

J!'irs t passage problem has for t,;/O decades been ttle subject of consi

dera,ble research, and an exact solution does not eXist, [18,25,26,27,35, 

36,37J. Below, a relatively simple approximate procedure is presented to 

predict the maximum re()ponses of multi degree linear system exposed to 

nonstationa::-y earthqualce acceleration process f (t). A \'Iidely used assu
o 

mptlon about the acceleration process 

bability distribution. 

i: (t) 
o 

is that of a GaUSsian pro-

rT,p by ' .... hich 

the response standard deviation tJ (t) must be multiplied to predict the 
y 

'rhe purpose of this point is to evaluate the factor 

level y below which the 
T,p 

absolute value of the response will rennin, 

"Iith probability p, during the time interval (O,T). 'rhe task is equiva-

lent to finding the reliability function R{~,T) tl~t the system response 

f:iils to make a "passage" acr03~; a specified response level" during the 

time interval (0,1'). In practise '.'103 calculate the first passage probn,

bilit] U{",l') vlhich with reliability function hoHs the relation 

R (ill, T) + U(~, T) = 1 (35) 

and for ';/hich only approxillla,te solutions has been found.. AmonG them the 

approach based on envelope crOSSings, including the clumping effect, 

seems the most favourable, because of its relative simplicity and nume

rical efficiency [see 35 ,36,{~O J. 
i'Iost of the first-passage papers indicate exponential decay of the 

Nliability (assuIlling that T - co) 
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R: RIA) : exp [- ~~A(tldt.J 
v/hare f,,(t) is the failure rate at time t, for barrier levels :t". 'llhe 

firs t e)(:cursion probability is equal to 

u{"): 1 - exp [-l7,,(t ldt] (37) 

']'11,1 for siD.'3.ll probabili tes (say <0.05) can be approxill1'3.ted by 

(38) 

Taking into account tl~t crossings of the response of lightly damped 

lJ3eUlators tend to occur in clumps one can approximate the failure rate 

in ter:as of the luean nUJnber of crossings at level" Vii th positive slope 

1'" ( t) 

itself 'V (t, A) and by its envelope ).l (t, A) 
+ e 

2)) (t, ") 
+ 

1 - exp[-Ve (t, ?o.)/2).l+ (t, "1] 
1 -)J (t, A)/v (t,ol 

+ + 

'l'he me'll number of crosGin~fl A by the process can be ob tained after in

te::r'3.ting the joint probability density function of the proces::l y and 

its derivative ~ 

~(t,A): Ijf '(A,y;t)dy 
+ 0 1Y 

(40) 

3ubstituting t"'lo-dimensi.onal shndard Gaussian probability density into 

equation (40) and carrying out the integration leads to 

" ... here _ ~ llyl 
v - () 1/2(1 _ n2. )' 

y V r::yy 

+ erf(V)]} :~. 
(41) 

2 .2.) 2 2 2 (,2 6 : tL (t = <y (t). 0. = 6. t = y (tl) , 
y y y y 

(42) 

n . = n . (tl = <y (t)y(t) /5. (t)tr.lt ) t::.yy e:yy y y 
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" sLllilar analysis can be done for the e::lvelope cros~~ing rate. Taldng 

into aceount trl'lt the response modulating functions (equation' ('18) ) 

::;lowly varies with time the envelope crOSSing rate can bEl approximated by 

V-r 2 - r; fa; 
)) (t,") -;; ---===---

e Vf2if' 
':lhere 

are time-depended spectral mom~nts, in .thich 

-1 tan 
1m ~'l (t ,w fl 
Re ~1(ttw)j 

( 43) 

1,2 

(44) 

'~'lu::J.tion (37) call be solved numerically either for the first p':l.Ssage 

prob.3.bili tJ U ('A) \'/i th assu;ned threshold level", or for the peak value 

of resIKl!lGe AR• The ,leak f:leter may be defined as 

m.ax OCt) 
( 45) 

• .,rhl:ll'S r:Ii..uO(t) is the sta.ndard deviation of the re:3ponse. In practical 

e:stiuFl.tEls of the typical peak response, median pea.l{ valueD uO• 5 and 

mdJi3.n pe'l.k fl.Ctors rO ,_ C~ln be applied • 
• ,J 

'rh? ex>~-:!llent nl:Lllerica.l analysis of the reliability of the industrial 

Gonerete chimney 16Jm hif';h is presented by Zemb.J.ty in the paper [401. 
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Summary 

RELIABILITY OF PARTLY DAMAGED STRUCTURES 

F. Vasco Costa 
Consultant, Lisbon, Portugal 

Reliability and optimization studies are usually based on the consideration 

of the probability of being reached a particular state of damage reg~rded 

as ultimate. In case of structural systems that pass through intermediate 

states of partial damage with a much higher probability of being reached 

than that of the ultimate state, the expectation of the expenses incurred 

when states of partial damage are reached are to be taken into c0nsideration 

when alternative designs are to be compared. 

Introduction 

Engineers are expected to design economical jet reliable structures. 

But how reliable needs each particular structure to be designed ? 

This will mainly depend on the importance of the consequences of the 

eventual damage of the structure. 

From a pure economical point of view, engineering structures are 

to be designed so as to minimize their "generalized cost", meaning 

by that the sum of their initial cost with the present value of all 

future expenses with their operation and maintenance plus the 

expectation of direct and indirect expenses in case of damage. 

As the sudden collapse of very large structures, like high dams, long 

suspended bridges and offshore platforms built in deep water, are 

the events that attract the attention of all who are interested in 

structural realiability, there is a tendency to assume that for all 

structures exists a well defined frontier between safe and unsafe 

designs. 
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For a large variety of engineering structures such frontier does not 

exist. This is the case, for instance, with rubble-mound breakwaters, 

which even after being partly damaged can remain for long years in 

service. 

The selection among alternative designs of engineering structures 

for which does not exist a clear frontier between safe and unsafe 

design is discussed in the following paragraphs. 

Expectation of the Expenses Incurred in Case of Damage 

The reliability of the members of a structure can increase or decrease 

while in use, depending on their type and function to be fulfilled. 

Hardening of concrete, plastic yielding at the hinges of steel members, 

and ajustments in the position of the bloks of an armour, can 

contribute to increase the reliability of the members; weathering, 

wearying, fatigue and damage accumulation can contribute to decrease 

the reliability of the members of a structure and, consequently, of 

the structure as a whole. 

Some types of engineering structures behave as series or brittle 

systems; as soon as one member fails, the whole structure collapses. 

Some other types behave as parallel or ductile systems; the failure 

of one member does not necessarily imply the collapse of the structure. 

The failure of a member can even, in case of redundancy of members, 

give occasion to adjustments that will render the structure more 

stable. (Thoft-Christensen and Baker, 1982, Ferry and Castanheta, 

1985, Baker and Turner, 1987, Vasco Costa, 1983) 

The consequences of the failure of a structure can also vary between 

wide limits, from temporary restrictions in its utilization to the 

catastrophic destruction of property and lives. 

By recourse to the concept of expectation all such circunstances 

can be taken into consideration in the design of engineering 

structures. As expectation is to be understood the probability of 

occurance of an event multiplied by the amount of all the direct and 

indirect expenses incurred if such event takes place. Not only the 

probability of the event to be considered and the amount of expenses 

incurred varies from member to member of a same structure, but as 
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well from structure to structure, depending on the function to be 

fulfilled by the member and by the structure. 

Evaluation of the Generalized Cost of a Structure 

In structural reliability analysis it is costumary to consider only 

one "failure state" or "limit state", which can be a cracking, a 

deformability, a 

structures can 

serviceability 

be maintained 

or 

in 

an ultimate state. 

service, certainly 

As 

with 

most 

some 

restrictions, even after being damaged to a small or large degree, 

let us see how to evaluate their reliability taking into consideration 

such circunstances. 

We are all familiar with problems posed by restrictions caused by 

the partial damage of a structure: limitation of loads on certain 

floors of a building after a fire or earthquake; reduction of traffic 

velocity on a road which pavement is under repair; extra care during 

the berthing of ships to a damaged jetly; emergency measures after 

a flood. 

If we really want to design economic jet reliable structures we have 

to quantify the probabilities of the different degrees of damage being 

reached and to identify and quantify also the diferent consequences 

that can result from the different degrees of damage to which a 

structure can be submitted. 

Although most members of a structure and most types of structures 

present several modes of failure during their expected life, which 

are not necessarily independent of each other, it will be assumed 

in what follows, for the sake of clarity, that they can be dealt with 

as if they were just one mode of damage, which can go through 

increasing degrees of damage, some of them permiting the utilization, 

with light or severe restrictions, of the structure. 

The probability of a certain member of a structure being damaged 

can be evaluated, in case of being known the distribution function 

F R of its resistance and the distribution function F S of the load 

effects, by the expression (Thoft-Christensen and Baker, 1982, pg 

71) 
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P (R-S ..;;0) (1) 

The probability of damage due to load effects with values in the 

internal x I x" can be evaluated by recourse to the same expresssion 

(see fig 1). 

Probability 
density of 
fslxl ~d 
f.lxl 

Probality 
density of 
d;lIuge 

b) 

Laid elfech fs Ixl ilnd resishnclS '.Ixl 

Fig. 1 - Probability of Damage for Load Effects in the Interval x' x" 

The degrees of damaged suffered by a member of a structure, because 

dependent of the randomness of its resistance, are not necessarily 

proportional to the magnitude of action effects that cause the damage. 

Notwithstanding it can reasonably be assumed that the distribution 

function of the degree of damage will be quite similar to that of 

the probability of the action effects (see fig 2a). 
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Fig 2 - Evaluation of The Generalized Cost of an Engineering Structure 
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Direct expenses, like those resulting from repairs, but also indirect 

expenses, like those resulting from restrictions in service and to 

indemni ties to third parties, can be expected to increase with the 

degree of damage suffered by a structure. Not so with the probability 

of occurance of different degrees of damage, the same happening with 

the corresponding expectations. As is low the probability of being 

reached large degrees of damage, the expectation of the very large 

expenses being incurred in case of a high degree of damage, is also 

low (see fig 2c). The larger values of the expectation of expenses 

will correspond to intermediate degrees of damage with large 

probability of occurance, in- spite of the fact that they do not imply 

very large expenses. 

The circunstance that the expectation of expenses resulting from 

intermediate degrees of damage can be much larger than that resulting 

from higher degrees of damage, will imply a revision on the attitude 

of designers. Instead of caring for only a particular state - of 

deformability or of serviceability or an ultimate state - they better 

consider the successive degrees of damage through which can go a 

structure before is reached a collapse state. 

From the considerations just presented it can be inferred that for 

reducing the generalized cost of some types of structures it will 

be more convenient to take measures to reduce the probability of 

occurance of relatively small damages and their consequences than 

to only care, as it has been the current practice, for a particular 

limit state of serviceability or an ultimate state. 

How to Compare Alternative Designs Taking into Account Successive 

Degrees of Damage 

The taking into consideration successive degrees of damage does not 

imply a· much nlorecqmplex analytic treatment than the consideration of 

only a limit state. 

Let us denote: 
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Co - initial cost of an alternative design to be considered; 

d number of degrees of damage to be considered for each 
mode of damage of such design; 

m number of its modes of damage; 

n number of periods of time the structure will be kept 
in service; 

r rate of interest being practiced; 

- probability of each degree of 
damage being reached in each 
mode of damage and during each 
period of time i; 

- direct and indirect expenses 
incurred for each degree and 
mode of damage and period of 
time i; 

- maintenance and operation expenses 
during each period of the 
structure life, 

- probability of survival of the 
structure, i.e., probability 
of its being maintained in 
service at the end of each period 
of time. 

Assuming independence of occurance for the different degrees and modes 

of damage, the most economical design on the long run among alternative 

designs to be considered, will be the one that will minimize the sum 

Co + initial cost 

+ (MI + I EI ) (1+r)-1 PI present value of expenses Pdm dm incurred during the first 
period 

+ (M2 + 2 E2 ) (1+r)-2 PI P2 present value of expenses Pdm dm incurred during second period 

+ ••••••••••••• 

(2) 

The probability of the different degrees of damage being reached will 

possibly, due to ajustments on the position of some elements and the 

hardning of some materials, decrease with time, but more likely it 
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will increase with time, due to accumulated damages and to weathering. 

Expenses with the maintenance, operation and the direct and indirect 

consequences of the different degrees of distinct modes of damage, 

will likely increase during the life of the structure. 

In case, for the sake of simplicity, such probabilities and expenses 

are assumed to be kept constant, and the probabilities of survival 

assumed to be equal to unity, the former expression can be given a 

much simpler form (Vasco Costa, 1968); 

(3) 

where am is the series present value factor, 

-1 -2 -n 
ai1J= (l+r) + (l+r) + ••• + (l+r) (4 ) 

Expression (3) can be phrased as follows: among alternative designs 

is to be selected the one that will permit the minimization the initial 

cost added to the present value of future maintenance and operation 

expenses plus the expectation of all direct and indirect expenses 

incurred in case of intermediate and final degrees of damage 

consideren,being reached. 

The higher the expectation of an intermediate degree of damage, the 

greater the interest in reducing its probability of ocurrance and 

the corresponding expenses incurred, if necessarily increasing the 

initial cost of the structure. On the other hand, the higher interest 

rates being practiced the greater the interest in reducing such initial 

cost, possible at the cost of larger maintenance and repair expenses 

and, even, of an increase in the probability of the structure being 

submitted more frequently to damage. 

Final Considerations and Recommendations 

The current practice of basing the evaluation of the reliability of 

structures on the consideration of only a particular limit state 

of cracking, or of deformability, or of serviceability, or of 

collapse - is not adequate in the case of structures that pass through 

intermediate states or degrees of damage before the limit state 

considered is reached. 
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The evaluation of the overall reliability of such structures requires 

the consideration, for each degree of damage in each of the possible 

modes of damage, not only of the probability of being reached but 

as well of all the expenses incurred, not only with repairs but as 

well indemnities to third parties affected by restrictions on the 

utilization of the structure. 

As the probabilities of being reached intermediate states of damage 

are always much larger than that of being reached a limit state of 

serviceability or of collapse (fig 2a), the expectation of expenses 

incurred when intermediate states or degrees of damaged are reached 

can much contribute to increase the generalized cost of the structure 

(fig 2c). 

In order to reduce the expectation of expenses incurred when 

intermediate states of damage are reached, measures are to be taken 

to reduce not only the probability of their being reached but as well 

the consequent expenses incurred. 

Careful control of the quality of the elements of a structure, good 

supervision during its erection, and periodic 

maintenance operations, will permit the reduction of 

of intermediate degrees of damage being reached. 

inspection and 

the probability 

Measures taken to render possible prompt repairs and to reduce 

restrictions in the utilization of a structure, can contribute to 

minimize expenses incurred when are reached intermediate states of 

damage. 
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CONTROLLED UNREUABLE PROCESS WITH EXPUCIT 
OR IMPUCIT BREAKDOWNS AND MIXED EXECUTIVE TIMES 

B. N. Dimitrov, N. V. Kolev, P. G. Petrov 
Mathematical Institute, Bulgarian Academy of Sciences 

1090 Sofl8, P. o. Box 373 

1.In~roduc~ion and .odel descrip~ion. 

This work con~inues ~he developmen~s o~ ~he au~ors [5.10]. 

concerning ~he minimiza~ion o~ ~he ~o~al execu~ive ~ime ~or 

unreliable processes un~il ~heir correc~ ~inish by ~he help o~ 

sui~able in~roduced con~roll schedule o~ ~es~s. copies 

and check-poin~s. I~ is supposed ~ha~ ~here is an inpu~ ~low o~ 

~asks (jobs. problems, service ~imes) which mus~ be execu~ed ~or a 

given ~ime X on a given appara~us (server. compu~er sys~em e~c.). 

The value X can be a mix~ure X - P1X1+ ... +prXr o~ r di~~eren~ 

values X1 •...• Xr where p. and X. are known, bu~ i~ is never 

previously clear which value o~ X. will occur (we say ~he ~ask 

is o~ ~ype i. i-l •...• r). Simul~aneously during ~he execu~ive ~ime 

X some undesirable even~s (breakdowns. ca~as~rophes) can arize in 

a random way and lead ~o execu~ion in~errup~ion or ~o 

incorrec~ ~inal resul~s. To have a guaran~eed correc~ ~inal resul~ 

one needs a con~rol ~es~ ~o de~ec~ ~he appearance o~ incorrec~ness 

in ~he case o~ implici~ breakdowns. The execu~ion mus~ be repea~ed 

~rom ~he origin un~il no breakdown is de~ec~ed. In ~he case o~ 

explici~ breakdowns ~he repe~i~ions ~rom ~he origin are necessary 

This work is par~ially 

Science by ~he Bulgarian 

Con~rac~ No '3~7. 

suppor~ed by ~he Commi~~ee o~ 

Conncil o~ Hinis~ers. according ~o 
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un~il no breakdown happens during ~he execu~ion ~ime. These 

repe~i~ions make ~he ~o~al execu~ive process dura~ion 

even~ually grea~er ~han X. 

Several au~ors like Chandy and o~hers [3,4], IBH [6], 

Kovalenko and o~hers [9], Brodezki [2], Hadjinov [8], Barosov [1], 

and ~he au~ors [5,10] no~ice ~ha~ i~ will be is prori~able ~o 

in~roduce a s~ra~egy ror making in~ermedia~e copies (check-poin~s) 

~o remember ~he achieved correc~ execu~ive s~a~emen~. Ir a 

breakdown appears or is de~ec~ed, ~he repe~i~ion s~ar~s (res~sr~s) 

rrom ~he las~ successrully copied s~a~emen~. Every rule ror 

de~ermina~ion or ~he copy epochs dUring ~he execu~ive ~ime or a 

separa~e ~ask is said ~o be a con~rol one. When ~his rule is given 

wi~h ~he sequece is ~he in~erval or a pure 

execuLive ~ime be~ween ~he k Lh and Lhe (k-1) ~h conLrol epochs, 

we say ~ha~ {ak } is a con~rol schedule. 

The aim or ~he works men~ioned above is ~o de~ermine ~he 

op~imal con~rol rule under some assump~ions abou~ ~he elemen~s 

or ~he execut.ive process when some unreliabilit.y is supposed. 

In our paper here we have t.he next. supposit.ions: 

a) ~here is a rlow or breakdowns which rorms a st.a~ionary 

Poisson process wi~h in~ensi~y r > 0; 

b) during t.he execu~ion t.ime or a t.ask only one t.ype or 

breakdowns can occur, namely (i) - explici~ breakdowns or 

(iO - implici~ breakdowns. The corresponding cases 

will be called, if necessary, as case i and case ii and 

~heir charact.erist.ics will be marked wi~h ~he subscript.s (i) or 

(ii) respect.ively; 

c) t.he required pure execut.ion ~ime X <if ~he apparat.us is 

absolut.ely reliable) has t.he rorm or a mix~ure X-P1Xl+",+PrXr' 

where' Xj are known random variables as well as P J > 0 and 

P 1 + ... +P r s 1. We suppose t.hat. ~he dis~ribut.ion runc~ions (d.r.) 

AJ(x)=P(Xj<x) are given j-1,2, ... ,r; 

d> t.he k ~h next. check-poin~ during t.he execu~ion of t.ask is 

a random variable <r.v.> which consis~s or t.ime ~he copy 

~ime dura~ion ror ~he case i , and 6 Cii ) or 6 Cii )+ a Cii ) ror t.he 
k k k 
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case ii. Here 6~") is ~he ~ime dura~ion of a con~rol ~es~ of 

implici~ breakdowns; 6 C")is ~he copy dura~ion which is used if no 
k 

breakdown is de~ec~ed; o~herwise no copy is necessary be:fore ~he 

successful repe~i~ion of ~he de:fec~ive execu~ive s~age; 

e) ~he sequences 

renewal processes wi~h 

{6C' )}"" {6c i. 1.) }"" {6c i. 1.)}"" 
k k=l' k k=l' k k=l 

d.f.s SC')(x), DC")(x), SC")(x), 

1'illi~e expec~ed life-1.imes 6', 6", 6i.i.; all ~he ~imes for 

form 

and 

~he 

elimina~ion of defec~s af~er explici~ or implici~ breakdowns 

are equal ~o zero (ins~an~eneous renevals); 

f) ~he con~rol shedule {ak} of check-poin~s is valid during a 

separa~e execu~ive ~imes of a ~ask and :forms a de~erminis~ic 

process; 

g) ~he op~imal con~rol problem is formula~ed as follows: 
C) C·) C·) 

Le~ T Ci.)(X,{ak >,{6k ' }) and T C,,)(X,{ok},{6k " },{6k " }) be l.he 

~o~al execu~ive l.ime dura~ions (wi~h an unreliable appara~us) for 

a ~ask requiring X execu~ive ~ime uni1.s (for absolu~elly 

reliable appara~us), ~hen ~he ques~ion is how ~o chose ~he con~rol 

shedule ~ha~ ~he expec~ed ~o~al execu~ive ~ime ~o be 

minimal. i.e. 

* ETCL)(X,{ak } •••. ) - in/ ETCL)(X,{a k } •••• ) (Z)=(i) or (ii) 
{ak} 

The sequence {a:} will be called op~imal con~rol schedule. 

furh~er we shall use ~he capi~al La~in le1.~ers :for ~he 

d.:f.s of ~he considered r.v.s no~a~ions and ~he corresponding 

Greek le~~ers for ~heir Laplace-S~il~ies ~ransforms 

no~a~ions. For example 
-sX. "" 

o.(s) - Ee '& J e 
J 0 

-sx 
dAj(x); 

'2. 80_ auxiliarry result.s 

We shall need ~he nex~ resul1.. 

"" -sx 
6(s) - J e dS(x). 

o 

Lemma 1. Under l.he above assump1.ions a)-g) hold: 

(LST) 

l.he LST of l.he 1.01.al process dura1.ion whi1.ou~ any con~rol 

shedule is de1.ermina~ed by l.he expressions 
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r 

j = 1 

~he corresponding expec~ed ~o~al process dura~ions are 
r 

ETc;.,<X> = 1'-1 ~ P j [ (aj<1'»-1 -1]; 
j = 1 

r 

p. <EX. +6> (a. <1'» -I. 
J J J 

j =1 
Proor. The proor is a simple consequence or Lemma 1 rrom [5], 

where ~his resul~ is given ror ~he par~iqular case or r-1. Taking 

in~o accoun~ ~ha~ now X is mix~ure or r.v.s X1 •... ,Xr ' we ge~ our 

r 

asser~ion rrom ~he equa~ion T1 <X>= ~ I<XmX.}Tl<Xj>' 
j =1 J 

where 

I{X_X.} is ~he indica~or runc~ion or .~he random even~ 
J 

X-X. <Le. 
J 

~he ~ask is or ~ype j>. 
Lemma 2. Ir ror all j ~he values Xj are known cons~an~s, i.e. 

ir P<Xj-Xj } - 1 ror given j and 0 < Xl < ..• < xr ' ~hen ror any 

given con~rol schedule {ok} holds 

Here 

j -1 

+ (1 - ~ Pq ) 

q=1 

r 

1'-1 ~ { P j [ e 
j = 1 

1'<x.-bn > 
J j 

-1 ] + 

ET (i. i.) (X,<ok}·<6k},<6k}) 

r 1'<x.-bn ) 

~ { P j [ nj 6 + 6 + <x.-bn >e J j] + 

j = 1 
J j 

j -1 n. 
J 1'O k 

+ ( 1 - ~ Pq ) ~ <ok+6 >e }-
q=l k=n j _ 1 +1 

~he rollowing no~a~ions 
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Proor. Firs~ or all we men~ion. ~ha~ a schedule in~erval ok 

and ~he nex~ check-poin~ dura~ion rorm an in~erval or which 

~he ~o~al execu~ive, dura~ion un~il i~s sucessrul rinish is 

T~t~=TCl,<Ok>+6k' l-<i>,<ii>. There are exac~ly nj such in~ervals 

in ~he pure execu~ive ~ime Xj <which realizes wi~h 

probabili~y Pj > and anincomple~e in~erval or lench~ <x'-On > 
J j 

which rinishes even~ually whi~ou~ any copy. in dirrerence or ~he 

rirs~ ones. In view or ~he par~icular rorm or resulr~ b> or 

Lemma 1 ror each one or ~he men~ioned cases as well as ~he 

"lack or memory" proper~y or 

dis~ribu~ion, according which ~he r.v.s 

independen~ and 
nj 

TCl,<Xj'{Ok}····> - ~ 
k =1 

~he 

{ TCk '} Q) are 
cl) k=1 

exponen~ial 

mu~ually 

we ge~ ~he asser~ion or Lemma 2 

corresponding resul~s. 

ar~er simply rearrangmell~s or ~he 

Corrolary 1. Under a given con~rol shedule {Ok} wi~h 

«> 

~ 0k= Q) and a given mix~ure according ~o ~he above condi~ion c> 
k=1 
~he expec~ed execu~ive ~imes are de~ermined by ~he expressions 

r Q) 1"0 
ET Ci.) (X. {Ok}' {6k} ) = 1"-1 ~ P j { ~ [(6<1"» -le k_1] [1-A j <Ok>] + 

j =1 k=1 

+ ~ 
k=O 
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r 00 

~ {Cak+6) [1-A j (b k )]e l'ak + EKk-D[Aj(bk)-Aj(bk_l)]} + 

k = 1 

r 00 

Here ~he no~a~ions of Lemma 2 are used. 

Proof. These resul~s follow from Lemma 2, Fubini's ~heorem 

and some simple ~ransforma~ions of ~he ob~ained rela~ions. I~ 

is sufficien~ ~o remark ~ha~ nj=k when XJ~ [bk ,bk + 1 1, and ~o use 

iL in ~he expressions 

one 

00 

g(x)dA. (x) 
J 

00 

g(x)dA. (x). 
J 

Definition. We say ~ha~ a con~rol shedule {ak} is an uniform 

iff akaa > 0 for each k=1,2, ..• 

Corollary 2. If ~he separaLe required process dura~ions X 
J 

of a Lask are exponen~ially disLribu~ed WiLh parame~ers ~j > 0 

and if Lhe con~rol schedule {ak} is an uniform one, ~hen in ~he 

case r~~j' j-1,2, .. . ,r ~he expecLed Lo~al process duraLions are 

presen~ed by Lhe expressions 

a(r-~·) 
+ (6(1')) -le J -1} 

if ~here is an index j for which ~j-l', ~hen ~he j th expressions 

in ~he general form of ~he summands is exchanged by Lhe forms 
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t'or t.he case i 

and 

t'or t.he case ii 

correspondin~ly. 

-;\.X 
Proot'. Under t.he considered condit.ion we have A.(x)- l-e J 

J 

0k=O, and bk=ko • By put.t.ing t.hese values in t.he expressions or 

Corolhtry 1 and t.aking int.o 
-k;\.o 

account. t.hat l-A j (b k )=e J 

-;\X 
dAj(x) .. ;\je J dx, 

a1"t.er not. very complicat.ed calculat.ions, we con1'irm t.he t.rut.h or 

Corollary 2. 

3. The op~iaal con~rol schedules 

Now we ~urn t.o the solut.ion or t.he opt.imal cont.rol problem, 

1'ormulat.ed in part. 1. As in [5] we shall est.ablish t.he opt.imal 

propert.ies ot' t.he unit'orm cont.rol schedules in bot.h considered 

cases. We shall use t.he results ot' [5] t.o simplyt'y some argument.s 

here. 

Theorem 1. Under t.he condit.ions 01" Lemma 2 t.he opt.imal 

control schedule {Ok} is a part.ially unit'orm one: over t.he 

int.ervals (xk' x k + 1] all check-point.s b Ck ) are equidist.ant. and 
J 

t'orm an arit.hmet.ical progression wit.h t'irst. t.erm 

dift'erence 
... a k ot' t.he t'orm 

a: - (xk + 1 - X k )( n: + 1)-1. 

Here t.he int.e~ers n: are det.ermined by t.he rule 

n: .. max ( n: X k .• 1 - x k S zn ). 

bCk,.x and 
o k 

where t.he numbers Zn 1'orm an increasing sequence <Zn}' det'ined 

t'or any t'ixed n .. l.2 •... as a root. or t.he equat.ions 
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and 

Proof. We use t.he resul;t.s and t.he not.at.ions o:f Lemma 2. The 
>I< t.erms of any opt.imal cont.rol schedule {ok} are among t.he 

solut.ions of t.he syst.em o:f equat.ions 

d 
......... E'(" ( l ) (X, {o k } , ••• ) 
<AI k 

o . k=1,2 •...• (l)-(i),(ii) ( 1 ) 

1"01' simplicit.y we give Lt." al'gumenLs only in t.he case 1''';2. 

I t. is easy t.o ve.rify t.hat. in t.he case i of t.he 

breakdowns t.he syst.em ·(1) t.akes t.he form 

explicit. 

r O e k = e 

for k=1,2, ... n 1 

( 2 ) 

Obviously all dist.ant.s a k sat.isfying syst.em (2) are equal 

on t.he set. k=I,2, ... ,n 1 as well as on t.he set. 

Furt.her we have t.o est.ablish t.he ext.remum t.ypes of 
>I< 

E"l(,) (X,{ak},H\}) in Lhe :found point.s ak' To Lhis end we veri:fy 

t.hat. t.he det.erminant.s 

A 
m 

a Z 
= Dei. [ ...................... . 

iJa.aa 
J .. 

are posit.ive for any m=1,2, ... • n z ' According t.o Silvest.er 

criLerion ([71,p.611), t.he quadrat.ic form wiLh coe:ff'icient.s 

o 
J .. iJa. aa 

ET (i ) ( .•• ) is posit.ive de:finit.e. It. is 

J .. 

slJfficient. t.o st.at.e 

minimal value at. t.he 

[71 t.hat. t.he :funct.ion 

point.s 

ET Ci )("') t.akes it.s 

point.s really form a 

part.ially uniform cont.rol schedule as ment.ioned in Theorem 1. 

For j=I,2, ... ,n 1 we have 

I' ra r(x1-on ) 
............... e '+pre 1 

6(1') 

r(X,-On ) 
Z 2 

+(1-p)re > 0; ( 3 ) 
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< 4. } 

ror j-1.2 •... • n 1 • s-n 1 +1 •...• n 2 and j-n 1 +1 •...• n 2 • s-1.2 ••..• n 1 

................................. = <1-p}re > 0 < 5 } 
00. do 

J S 

and ror j~. j.s-1,2, ... ,n 1 

r<x 1 -bn } r<x2 -bn ) 
pre 1 +r<1-p)e 2 > 0 < 6 } 

do 00 
J S 

I~ is easy ~o see ~ha~ ~he principal minors Am or ~he ma~rix or 

Lhe mixed deriva~ives are posi~ive ~aking in~o accoun~ rela~ions 

(3) - (6). 

Keeping ~he same plan ror ~he case ii we convince 

ourselr. Lha~ sys~em (1) is equivalen~ ~o ~he nexL one 

r a r<x 1 -bn } 
[l+r(a +6>]e k = p[l+r<x -b +6}]e 1 + 

k 1 n 1 

As in ~he previous case we es~ablish ~he s~a~emen~ abou~ Lhe 

par~ially uniform kind of' ~he op~imal con~rol schedule 

Fur~her we use a~ain ~he Silves~er criLerion Lo verify ~ha~ ~he 

ma~rix or mixed derivaLives derines a posiLive defini~e quadraLic 

rorm,' and i~ is surricien~ Lo asserL ~haL E'l- (i. i.) < ••• ) has a 

minimum t'or Lhe round conLrol schedule. 

For ~he resL of Lhe proor ~he resul~ of Theorem 

* are used. Obviously, ~he con~rol schedule {uk} 

2 from [5] 

is op~imal 

whenever i~ is opLimal over everyone of ~he segmenLs (xk .X lc + 1 ] 

during ~he Lask execuLion. In o~her words. af~er a possible ~ask 
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durat.ion X k t.he cont.rol must. be adjust.ed t.o t.he nearest. aile X).;+l 

in an opt.imal way. Here t.he result.s from [5] for l.he 

del.erminat.ion of' t.he op1.imal cont.rol schedules wit.h respect. 1.0 

t.he indicat.ed variables are valid. It. means t.hat. when t.he 

t.resholds zn of t.he cont.rol schedule changes are det.ermined, 

t.hen t.he opt.imal cont.rol schedule {a:} is det.ermined by t.he 

rules circumscribed in Theorem 1. The t.heorem is proved. 

Table 1 

INTESIVITY 7=0.02 

TEST AND COPY TIME FOR EXPLICIT BREAKDOWN = 1 

TEST TIME FOR IMPLICIT BREAKDOWN 

COpy TIME FOR IMPLICIT BREAKDOWN 

RNOC 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1-1 

15 

TRES 

14.0 

23.5 

33.0 

42.0 

51. 0 

60.5 

69.5 

78.5 

88.0 

97.0 

106.0 

115.0 

124.5 

13~~. 5 

142.5 

151. 5 

EXPLICIT 

CAPD 

16.15 

27.76 

39.42 

50.47 

61.52 

73.21 

84.27 

95.33 

107.01 

118.08 

129.15 

140.21 

151.90 

162.96 

174.03 

185.10 

UAPD 

16.15 

29.99 

46. '13 

65.81 

88.65 

117.67 

150.74 

190.33 

240.62 

297.93 

366.55 

448.70 

553.06 

671.99 

814.38 

984.86 

0.7 

0.3 

TRES 

9.5 

16.0 

22.5 

29.0 

35.5 

42.0 

48.5 

55.0 

61.5 

68.0 

74.0 

80.5 

87.0 

93.5 

100.0 

106.5 

Note: RNOC is an abbreviat.ion 

IMPLICIT 

CAPD 

12.33 

20.71 

29.18 

37.66 

46.15 

54.64 

63.13 

71.63 

80.12 

88.62 

96.46 

104.96 

113.46 

121. 96 

130.46 

138.95 

UAPD 

12.33 

22.99 

36.38 

53.04 

73.63 

98.90 

129.78 

167.33 

212.80 

267.66 

328.15 

406.22 

499.65 

611.19 

744.07 

902.07 

of Required Number 

Of Check-point.s; TRES of TRESholds; CAPD of Cont.rolled Average 

Process Durat.ion; UAPD of Ullcont.roll.:d Average Process DUl'at.ion. 
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A rlum.!rical example about. t.he comparison of' t.he t.resholds of' 

expect.ed cont.rolled and uncont.rolled process durat.ions in t.he 

cases of' explicit. and implicit. breakdowns is shown in Table 1. 

Therein t.he breakdown int.ensit.y r as well as t.he t.est. and t.he 

copy expect.ed t.ime durat.ions 6 and 6 are given const.ant.s. 

Let. us look now at. t.he exponent.ial case. As in corollary 2 we 

suppose t.hat. t.he separat.e required process durat.ions 

are exponent.ially dist.ribut.ed wit.h paramet.ers ~j>O. 

x. of' a t.ask 
J 

Under t.he given assumpt.ions t.he f'ollowing t.heorem is t.rue: 

Theorem 2. The opt.imal cont.rol schedule when t.he mixt.ure x. 
J 

is an exponent.ial one is an unif'ol'm cont.rol schedule. In 

addit.ion t.he cont.rol is pl'ef'erable: 

- f'or case i, if' t.here exist.s an index j, f'or which it. is 

f'ulf'illed 

- f'or case ii 

;\. j < r£1-6( r) ] - 1 ; 

always. 

Proof'. One can prove t.he t.heorem using t.he result.s of' 

Corollary 2 f'or t.he search of' an opt.imal value u* of' t.he supposed 

unif'orm cont.rol schedule {uk}' Such an approach is used in [5]. 

Here we pref'ere t.o prove t.he opt.imal propert.ies of' t.he 

unif'orm cont.rol schedule using t.he result.s of' Corollary 1 in 

'their part.icular f'orm when A. (x) 
J 

-;\..x 
l-e J 

shall use t.he same plan as in t.he proof' of' Theorem 1 For 

simplicit.y it. is suf'f'icient. t.o prove t.he t.heorem in t.he case 

r=l, as it. is shown below. 

For t.he case i we have (r=1) 

1 

[ r 6 (r) 

~ 00 -rb 
+ ............... ]~e k 

r(l'-~) k=O 

00 ;\. 

[ ;(';:~) + 

1 

;\ ] ~ 
k =0 

-rb · 
e k 

If' we denot.e by Cland C2 t.he f'act.ors of' t.he f'irst. and second 

summands correspondingly. we derive f'or j a l.2 •••. (remembering 

t.hat. bk=al+ ... +a k) 
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( 7 ) 
Vb 

J 

Comparing t.wo neighbouring equat.ions of' t.his syst.em we get. 

aj=aj+1=aj+2= ••• =a, i.e.t.he unique ext.remal cont.rol 

schedule is t.he unirorm one. Furher, using t.he relat.ion 

in t.he expressions b js= and calculat.ing t.he 
Vb {)b 

J S 

f'irst. t.wo principal minors of' t.he mat.rix B [ b 
J S 

we conf'irm t.hat. t.hey are posit.ive, if'f' X < 1'[1-6(1')J- 1 • 

The mat.rix B is a t.hreediagonal symet.rical one. Let. 8 m is t.he 

principal minor or order If. ror t.he mat.rix D. 

est.ablish t.hat. t.he relat.ions 

It. is easy t.o 

( 8 ) 

are correct.. To apply t.he Silvest.er crit.erion it. is suf'f'icient. t.o 

prove t.hat. it. is f'ulf'illed 

B1 > 0, 8 2 > 0, b mm > 0 ror any m=2,3,.. ( 9 > 
In t.hat. case according t.o relat.ions (8),<9) and t.he Silvest.er 

crit.erion t.he quadrat.ic form det.ermined by t.he mat.rix B is a 

posit.lve definit.e one, i.e. t.he corresponding expect.ed process 

t.ime durat.ion has a minimum f'or some unif'orm 

schedule (uk}' 

For t.he case ii complet.ely analogously we have 

00 

ET ( \ \ ) (X, (a k}) 2 
k=o 

+ [ 6 

[ ...... :.. ...... a + 
1'-"ll k+1 

1'6 

1'-"ll 

00 -Xb 
e k 

Syst.em (1) is equivalent. t.o t.he following one 

- ( 
where °1 , °2 , 03 are given const.snt.s: 

cont.rol 

( 10 ) 
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]'>.. 

(';:::;\)"2 ' 

... IL is sufficienL Lo sLaLe LhaL {ak} are consLanLs. Using (10) in 

Lhe expressions for Lhe mixed derivaLives, t.he recurrent. 

relaLions (8),(9) and Lhe Silvest.er crit.erion we confirm Lhe 

posiLive def'iniLness (1'01' all>.. and r) of t.he quadrat.ic form wit.h 

coefficient.s b . We omiL here t.he t.rivial det.ails. 
J S 

In t.his way t.he opt.imaliLy of t.he unif'orm cont.rol sc~edule 

is proved. FurLher one can use Lhe same argument.s as in Theorem 3 

f'rom [5] t.o det.ermine t.he opt.imal value 

COl'l'sponding opt.imal unif'orm conLrol schedule. 

4.So.e far~her probleas. 

The f'ound t.heoriLical resulLs need 

... 
a ot' t.he 

corresponding 

simplificat.ions f'or present.ing Lhem in more convinient. for t.he 

pracLical use f'orm. In addiLion, some problems arrise in t.he case 

Llf' Ttworem 1, if' one want.s t.o det.ermine an unif'orm cont.rol 

schedule, opLimal for t.he execut.ive t.ime X, wit.houL changes in 

Lhe poillt.s XJ' Cost. f'uTlcLions more general t.han ET(X) are also 

inLeresLing being opLimized as well as some pl'oblem~ under more 

geu'='J'''' 1 cUlldi Liolls. 
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RELIABILITY COMPUTATIONS FOR RIGID PLASTIC 
FRAMES WITH GENERAL YIELD CONDITIONS 
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DK 2800 Lyngby, Denmark 

ABSTRACT: The topic is reliability analysis of frame structures with 

rigid-ideal plastic constitutive behavior assigned to discretized hinge 

models. General yield conditions with internal force interaction are 

considered. Adoption of the associated flow rule assures the validity 

of the static theorem. On this basis a theorem about linear combina

tions of so-called linearly associated lower bound safety margins 

proves useful for setting up a strategy of fast identification of im

portant collapse mechanisms. They are important in the sense of close 

upper bounding of the reliability against collapse. 

Introduction 

Many current reliability analysis models of ductile structural systems 

are claimed to be concerned with realistic modelling of the constitu

tive pre- and post-failure behavior of the potential failure elements 

of the system. However, these models are often of random vector type in 

their representation of loads and resistances. This implies that they 

are not mathematically fit for more than very simple random load path 

models. Generally they contain no load path information at all. Their 

user seems to rely on the help of a monster like a giant ten-armed oc

topus to keep the structure from failing during the phase of transfer 

of the load to the structure (3). Moreover, the realism seems to be 

confined to the uniaxial modelling of the constitutive behavior. When 

modelling the post-failure multiaxial constitutive behavior of ductile 

elements it is not uncommon that recourse is had to the principles of 

the theory of ideal plasticity. 

The difficulties of lack of consistency and clarity in so-called 

realistic modelling motivate a continued interest in improving the me

thods of reliability analysis for structural models with rigid-ideal 

plastic behavior. At least this behavior gives the considerable advan

tage that the safe set with respect to collapse is independent of the 

load history on the structure. 
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Finally it is worth-while to remember that in stochastic modelling 

there is no need for detailing the behavior of the individual outcomes 

of the random experiment beyond what can be captured by the probabili

ties of the events of practical relevance. More than that tends to 

overstep the threshold of objectivity [3,9]. 

Yield hinges and yield conditions 

A plane or spatial frame structure is considered. It is assumed that 

all loads are given as concentrated forces attacking at a preselected 

set of nodal pOints of the frame structure. A finite set H of pOints of 

potential yield hinge formation is chosen among the nodal points such 

that a mechanism formation is possible. 

The pOints of H may possess directional multiplicity in the follow

ing sense. Consider a nodal pOint with N joining beams numbered by 1, 

... , N, and consider a subset {i1 , ... ,im} of m of these beams. For each 

i in this subset let a potential yield hinge be temporarily defined in 

the corresponding beam at a distance 0i from the nodal pOint. Now let 

all 0i approach zero. Then a pOint in H is obtained which is said to 

have directional multiplicity m. To each of the considered beam direc

tions in the subset there is adjoined a yield condition 

( 1 ) 

defined in terms of the internal forces qi at the nodal point in the 

considered beam, and a vector Yi of random yield strength variables. 

The functions f. are defined such that the sets 
~ 

(2) 

of no yielding are all convex and non-empty with probability one. Fur

thermore the associated flow rule (the normality condition) is postu

lated. 

The m yield conditions of a potential yield hinge of directional 

multiplicity m may be joined into a single yield condition 

f(q,Y) = min fi(qi'Yi ) = 0 
i 

(3 ) 

where i E {i 1 , ... ,im} and q (qi , ... ,q. is a generalized internal 
1 ~m 

force vector while Y = (Y. , ""Yi ). From the associated flow rule for 
~1 m 

each of the componental yield conditions it directly follows that the 
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associated flow rule is valid also for the jOint yield condition. In 

case of simultaneous yielding in more than one beam the strain rate 

vector is situated at a singularity point of the jOint yield condition. 

Experiments with tubular jOints of types as used in off-shore jack

et frame structures show that interactions between the internal forces 

in the different joining beams may playa role in the initiation and 

the development of the failure of the joint [7]. A rigid plastic model 

for the jOint failure as defined by Eq. 3 does not give an interaction 

effect of the mentioned type. However, Eq. 3 may be considered as a 

special case of the more general yield condition 

o 

where 

f«q. ,0, ... ,0),'1) 
~1 

and where the associated flow rule is postulated. 

(4 ) 

(5) 

Example 1: The yield condition format for large steel tubular joints 

may consistently with current practice [7] be chosen as 

r ( I q .. I \v .. 1 
min 1-1 ~J ~J = 0 

j L i\q .. (y)l J 
u~J 

(6) 

where the minimum is taken over the set of the non-interactive parts 

of the yield condition and the summation is with respect to the inter

nal forces q .. contributing to the jth part. The denominator q ., (Y) 
~J u~J 

is the ultimate absolute value of the internal force q .. when it is 
~J 

acting alone. The ultimate internal force is a function of the random 

strength variables Y and the geometrical properties of the joint. 

These dependencies as well as the exponents v .. should be obtained by 
~J 

regression to experimental data. Generally they will be different in 

the different orthants of q. 

Linearly associated lower bound safety margins 

In the following let r be the number of potential yield hinges with 

directional multiplicities m1 , m2 , ... , mr respectively. Let 
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fi(qi'¥i) = 0 be the yield condition of hinge i. Then the structure is 

not in a state of collapse if and only if all the random functions 

i " ... , r (7) 

take nonnegative values for some statically admissible set of values 

of the internal forces 0" ... , Or. The r random functions in Eq. 7 are 

called lower bound safety margins. 

Consider the ith yield hinge and omit the index i whenever it is 

not needed. It is sufficient for the plastic analysis to make the con

vention that ° only contains as components those internal force compo

nents that not in all pOints of the yield surface are tangential to 

the yield surface. Thus the dimension of ° is at least , and at most 

6 m. 

Let a be a vector of the same number of components as Q. Assume 

that there is at least one point P on the yield surface at which the 

vector a can act as a strain rate in accordance with the associated 

flow rule. Then the vector a is called an admissible strain rate. If 

the yield surface is bounded in the active internal force components, 

any vector a is an admissible strain rate. The scalar product 

<P,a> (8) 

is called the plastic dissipation corresponding to the admissible 

strain rate a, Fig. ,. For given ¥ the dissipation is uniquely defined 

by a also if P is not unique. This follows from the convexity of the 

yield surface. 

For each vector a and internal force Q the difference 

(9 ) 

is called a linearly associated lower bound safety margin to the lower 

bound safety margin f(Q,Y). 

Let A(X) be the set of all admissible internal force vectors 

(0" ... ,Or)' that is, all internal force vectors which together with 

the external forces X constitute equilibrium. The following theorem 

proved in [6) is a generalization of a theorem proved in [2): 

THEOREM: Let Mi(Oi'¥i,ai ), i = " ••• , r, be linearly associated lower 

bound safety margins corresponding to the r different potential yield 

hinges. Then any linear combination 
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M(q,Y,(iI:O 

(0,0.) 

Fig. 1. Definition of dissipation and linearly associated safety 

margin corresponding to strain rate a. 

(10) 

with nonnegative coefficients c 1 , c r is an upper bound safety mar-

gin if it is a constant within the set A(X) of admissible internal 

forces. 

Consider the special case where the yield condition in Eq. 7 is 

polyhedral in a. If a is orthogonal to a face of the polyhedral yield 

surface, the equation of the hyperplane of the face directly defines 

the linearly associated safety margin. Otherwise the point P in Eq. 8 

is a pOint at which two or more faces meet. Then a can be written as a 

linear combination with nonnegative coefficients of normal vectors to 

the meeting faces. It follows from this that the linearly associated 

safety margin corresponding to a is a linear combination of the linear

ly associated safety margins that correspond to the faces meeting at 

pOint P and with the same nonnegative coefficients as for a. 

This property shows that each of the terms in Eq. 10 can be re

placed by one or more terms. These are all linearly associated lower 

bound safety margins corresponding to some faces of the yield condi

tion. These faces must meet each other at a single vertex of the yield 

surface. The actual vertex is that (or one of those) for which a can 
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be a strain rate in accordance with the normality condition. 

A potential yield hinge with a yield condition composed of nonin

teracting not necessarily polyhedral parts as in Eq. 3 can naturally 

be separated into as many spatially coinciding but noninteracting po

tential yield hinges. This directly defines a corresponding decomposi

tion of the terms in Eq. 10. 

Dominant linearly associated lower bound safety margins 

It is possible to use the theorem as a basis for a general strategy of 

searching upper bound safety margins that contribute essentially to 

the reliability bounding from above. First step is to choose a stati

cally determinate primary system for the n times redundant frame struc

ture. The corresponding vector of internal force redundants is denoted 

by z. As z varies over the n-dimensional space, the set of internal 

forces (Q1, .•. ,Qr) varies over A(X). Corresponding to each z there are 

s ~ r local geometrical (Hasofer-Lind) reliability indices S1 (z), ... , 

Sa(Z), at least one for each lower bound safety margin f. (Q.,Y.) (r = 
~ l.l.l. 

6, s = 24 in Example 1; in very particular cases s can be infinite). 

There is at least one value of z for which some of the geometrical re

liability indices are equal to a common value S characterized as being 

the largest value that can be taken by the smallest of the reliability 

indices S1 (z), ... , Ss(z). The problem of determining this common value 

S may be formulated as the optimization problem: Determine the maximal 

value of S under the constraints 

i 1, ... , s ( 11) 

for z varying over the n-dimensional space. 

In the special case where S. (z) is linear in z for all i = 1, ... , 
l. 

s, this optimization problem is a linear programming problem which may 

be solved by a standard simplex procedure. Then there is a value of z 

giving the optimal solution so that at least a number of min{s,n+1} 

linearly associated lower bound safety margins have the common optimal 

reliability index. Moreover, the value of z can be determined so that 

the corresponding set of min{s,n+1} linearly associated safety margins 

has a coefficient matrix to z with the largest possible rank min{s,n}. 

A proof of these statements is given in [2]. 

The linearly associated lower bound safety margins of common opti

mal reliability index are called dominant. 
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Search for upper bound safety margins 

Consider the case where s > n + 1 and assume that n + 1 dominant line

arly associated lower bound safety margins have been determined so 

that the rank of the coefficient matrix to z is n. As mentioned in the 

larst section this is always possible if the geometrical reliability 

indices are linear in z. Then there may be up to n + 1 regular (n,n) 

submatrices of the coefficient matrix. For each choice of such a regu

lar (n,n) matrix there is a unique solution of z in terms of the cor

responding safety margins. Let the corresponding set of hinge points 

be denoted by H,. The search strategy is hereafter as follows. For 

each hinge point k in H'H, the solution z is substituted in the equa

tion for the general linearly associated safety margin Mk(Ok'Yk'Uk )' 

where uk is the variable strain rate vector. Since Ok is linear in z, 
this produces a linear combination like Eq. 10 with all or all but one 

lower bound safety margins being dominant. The n + , coefficients c. - ~ 
are linear in uk' Each coefficient is therefore nonnegative in a half-

space of uk' In case the intersection of all n + , half-spaces is not 

empty, it defines a simplex in the space of the ok vectors. Each pOint 

of this simplex can be represented as a convex linear combination (i.e. 

a combination with nonnegative coefficients that add to ') of vectors 

in direction of the "edges" of the simplex. An edge is a half-part of 

a one-dimensional space defined by setting dim (uk) - 1 of the coeffici

ents c i to zero and requiring that the remaining coefficients are all 

nonnegative (dim(uk ) = dimension of uk' mk ~ dim(uk ) ~ 6mk ). Let there 

be m edges. Of course, m ~ n + 1. (For plane structures the dimension 

of the uk space is usually either 2mk or mk • If mk = 1, it is obvious 

that there can at most be 2 edges in the first case and 1 edge in the 

second case). The uk vectors in direction of the edges are of particu

lar interest because any upper bound safety margin defined by the con

sidered n + 1 lower bound safety margins may as indicated above be 

written as a convex linear combination of the m particular upper bound 

safety margins that correspond to suitably scaled Uk vectors of the m 

edges. Let these upper bound safety margins be S1' ... , Sm' Assume for 

the present that all the considered linearly associated lower bound 

safety margins are also linear with respect to the strength variables 

Y, that is, the dissipation in each yield hinge is linear in the 

strength variables. Then the ~k vectors of the edges may be scaled 

such that var[Sil = 1 giving the reliability index Bi = E[Sil of Si 

and the reliability index 
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of the linear combination a 1S1 + + amSm. The coefficients a 1 , 

am are all nonnegative and Ps is the correlation matrix of S = 
(S1, ... ,Sm). Since 

it follows that 

(12) 

( 13) 

(14 ) 

Thus the most significant upper bound safety margins are among S1' ... , 

Sm. It is therefore a reasonable strategy only to store these (or some 

of these) for later use in the calculation of an upper bound on the ge

neralized reliability index. Of course, the strategy is applicable also 

when linearity with respect to Y is not present. Only it is not guaran

teed that Eq. 14 holds. 

If the number s of local geometrical reliability indices is at most 

equal to the degree of redundancy n, it is not possible to eliminate z 
by isolating a regular (n,n) matrix. In fact, if the coefficient matrix 

Krn to z in the set of s dominant linearly associated lower bound safe

ty margins M1 , ... , Ms has the maximal rank s, there is no linear com

bination 

e'K z + terms independent of z sn 
( 15) 

which is independent of z. For the considered strategy to be applicable 

it is therefore required that if the number r of potential yield hinges 

is at most equal to the degree of redundancy n, then the corresponding 

yield surfaces must either consist of a sufficient number of non-inter

active parts and/or of meeting polyhedral faces to make the number s 

larger than n. With this provision the aforementioned splitting proper

ties of the terms in Eq. 10 can become active. 

Example 2: The simple frame structure shown in Fig. 2 is made of beams 

with a yield condition as shown to the right-hand side. It is an idea

lization which corresponds to an ideal rigid-plastic material with co

inciding yield stresses in tension and compression and a beam cross

section as shown. The discretized system is shown in Fig. 3 together 

with the system chosen as the statically determinate primary system. 
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The lower bound safety margin f. (O.,Y.) of the ith point of H = 
~ ~ ~ 

{1,2,),4,S,6} can due to the polygonal yield condition with four sides 

be replaced by the four linear safety margins 

M. Y. + Q1i + Q2i ~ ~ 

-+ Y. Q1i Q2i M. + -
~ ~ 

+- Yi Q1i Q2i 
(16 ) M. - + 

~ 

M:+ 
~ 

Yi - Q1i - Q2i 

in which Q1i and Q2i are bending moment and normal force respectively 

both represented in the same physical unit as the yield stregth Yi . 

The lower bound safety margin f. (O.,Y.) is nonnegative if and only if 
~ ~ ~ 

all the four linear safety margins of Eq. 16 are nonnegative. These 

four linear safety margins are linearly associated lower bound safety 

margins to fi(Oi'Y i ). There are an infitity of other linearly associat

ed lower bound safety margins. These correspond to the vertices of the 

yield condition. 

Let si represent the sign sequence corresponding to the sequence 

s1i' s2i of +1 or -1 (Le. si = ++ for s1i = 1, s2i = 1, si +- for 

s1i = 1, s2i = -1, si = -+ for s1i = -1, s2i = 1, and si = -- for s1i 

-1, s2i = -1). Then the general linear lower bound safety margin in Eq. 

16 may be written as 

s. 
M. ~ Y. - [ s1i s2i 1 (AiX+BiZ) (17 ) 
~ ~ 

in which the matrices Ai' B. are 
~ 

A1 

I; 

0 

~I 
aB 1 [~ 

0 

-~I 
( 1 8 ) 

-h 0 

A2 [~ 0 ~] aB 2 I~ a -a-I 
-h 0 -h 

A) [~ 0 ~] aB) [~ 
a -a-I 

0 h -h 

A4 [~ 0 ~] 
aB4 [~ a 

-~I 0 h 

AS [-~ 0 

-~I 
aBS I--~ a 

~ 0 0 

A6 I~~ 
0 

-~I 
aB 6 [-~ 

0 

~I 0 0 
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as they follow from elementary statics. In order to be specific with 

numbers, the following example is chosen: 

E[ y i] Il y ' E[X 1 ] YIl X' E[X2 ] E[X3 ] Il X' (1 9) 

D[Yi] 0y' D[X1 ] yoX' D[X2 ] D[X3 ] oX' 

i + j P[Yi'Yj] = P, all i,j : p[Yi,X j ] = 0, 

r[X 2 ,X3 ] = r, P[X 1 ,X2 ] = P[X1 ,X3 ] = 0, 

a/h = 50, apx/Il y = 5, aox/oy = 2/5, Y = 2/25 

s. 
The reliability index S.1 (= ratio of mean to standard deviation) of 

1 

each of the linear safety margins of Eq. 17 can then be calculated as a 

function of ~1 = zl/lly' ~2 = z2/Py' ~3 = z3/lly except for proportiona

lity with Ily/Oy. All variances of the linear safety margins turn out to 

be independent of the correlation coefficients p and r and thus also 

the reliability indices are independent of p and r. 

The problem of maximizing S with respect to ~ = (~1'~2'~3) under 
s. 

the 24 constraints S 2 Si1 (setting Ily/Oy = 1) is first solved using 

any standard linear programming algorithm. The solution is S = S~-
+- -- +-

S2 = S5 = S6 = 0.785 corresponding to ~1 -0.1152, ~2 = -0.1081, 

~3 = 0.1081. The corresponding safety margins are the dominant lower 

bound safety margins. According to the static theorem of plasticity 

theory the set of optimal lower bound safety margins defines a lower 

bound on the reliability of the frame structure. 

For Py/Oy = 5 the smallest lower bound safety margin reliability 

index is 5S = 3.93 while the corresponding generalized reliability in

dex based on all 24 linear lower bound safety margins is 3.56 for p = 

r = 0, 3.57 for p = r = 0.5, and 3.62 for p = r = 0.8 (formally assign

ing the jOint Gaussian distribution to the set of basic variables 

[1]). However, considerable improvements may be obtained by non-linear 

programming optimization using first order reliability methods (FORM) 

on the parallel system obtained by introducing several different z vec

tors of redundants [8]. Alternatively, directional simulation may be an 

effective way to obtain essential improvements over the simple optimi

zation used in this example [4]. Such directional simulation results 

are presented in Table 2. 

The optimization results are interesting because of the theorem. In 

order to identify upper bound safety margins with small reliability in

dices it is a reasonable strategy to use lower bound safety margins 

with small reliability indices in the linear combinations. Therefore 

the dominant lower bound safety margins are of particular interest for 
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this purpose. The reliability index of the linear combination in Eq. 

10 depends both on the coefficients in the combination and the corre

lations between the terms. Thus there is no guarantee that the linear 

combinations with nonnegative coefficients of the dominant lower bound 

safety margins among them contain the most important upper bound safe

ty margin. In any case, the strategy of considering these particular 

linear combinations leads to upper bound safety margins and they are 

quite useful when judging possibilities of improvements of the con

struct of lower bounds on the reliability. 

The dominant lower bound safety margins are 

M~- '\, 
1 

[" 
0 -f [,,- (20) 50 

+- -49 -50 49 M2 /;;2 

M;- -1 50 /;;3 
+- -1 0 -49 M6 

where'\, here means "equal to" except for terms which are independent of 

~ (i.e. terms that depend solely on the yield moments Y1 , .•. , Y6 and 

the external forces x1 ' x2 ' X3 ). All four 3-dimensional submatrices of 

the coefficient matrix in Eq. 20 are regular. Thus there are four pos

sible solutions 

1 
/;; '\, 50 

1 
/;; '\, 50 

1 
/;; '\, 50 

M1 
+

M2 
+

M6 _ 
+

M2 

M5 
+

M6 

when each one of the equations in Eq. 20 is excluded in turn. 

(21 ) 

These linear combinations of dominant lower bound safety margins 

are next substituted for ~ in Mi(Qi,yi,a) + [a, a 2 1 Bi ~ for those i 

that are not contributing to ~. In this way linear combinations inde

pendent of ~ are obtained. Consider the first ~ of Eg. 21 and i = 3. 

Then 
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[<Xl <X 2 ] B3 1;; '" - [<Xl <X 2 ] 
1 

[5: 

2550 
5:J 

Ml (22) 2500 

52 +-
M2 

_M5 

which gives nonnegative coefficients to Ml ' M;+' and M;- for <X chosen 

within the simplex defined by the inequalities 

(23) 

The edges of the simplex are {<X120,<x2=0} and {<Xl~0,2550ul+52<X2=0}. The 

first edge corresponds to a strain rate vector proportional to 

(-50,0) 25(-1,-1) + 25(-1,1) (24 ) 

which, in turn, corresponds to the linearly associated safety margin 

(25) 

The resulting edge-linear combination with nonnegative coefficients is 

(26) 

The second edge corresponds to a strain rate vector proportional to 

(52,-2550) = 1249 (-1,-1) + 1301 (1,-1) (27) 

giving the edge-linear combination 

(28) 

This type of calculations made for the twelve combinations of the four 

~ from Eq. 21 and the three indices i relevant for each ~ give 14 dif

ferent of ~ independent linear combinations with nonnegative coeffici-
-- -+ +- ++ -- -+ +- ++ 

ents. The coefficients to Ml ' Ml ' Ml ' Ml ' ••• , M6 ' M6 ' M6 ' M6 
are given in this order as the rows in Table 1. The rows are ordered 

according to increasing reliability index of the corresponding upper 

bound safety margin in the case p = r = 0. The reliability indices are 

given in Table 2 in the columns marked by ¢ (the columns marked by 0 

concern Example 3). Experience shows that the upper bound safety mar

gins identified by this approach can be sufficient for calculating a 

satisfying close upper bound on the generalized reliability index of 
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0 (j u 0 () I) I) 0 0 0 0 I) 0 0 0 0 0 0 0 25 0 26 U 

0 U U .""')'-
~:.> I) 26 I) 0 0 0 0 0 0 0 U 1 0 0 0 0 () U 0 

0 (J 0 0 0 0 0 0 0 () 0 0 0 I) 0 25 0 25 0 I) I) 1 0 
0 ~5 I) 0 0 I) 0 0 0 0 0 0 U U 1 0 0 0 0 0 0 0 

0 U U U U I} 0 1249 0 1301 0 U 0 0 0 ·1 U 0 0 0 I) 0 0 
0 (j U 0 0 0 0 0 0 0 0 0 1215 0 1225 0 lJ 0 0 0 0 51 0 
I) t) I) I) 0 51 0 U 0 0 0 1226 0 1224 0 I) 0 0 0 tJ I) I) tJ 
() () U t) I) U 0 () 1276 I) 1274 0 0 0 0 49 U I) 0 I) 0 51 () 

25 I) 24 I) 0 0 U 0 0 0 0 U 0 0 U U 0 0 0 0 0 1 0 
U II 0 I) 0 1 0 0 0 0 0 0 0 0 0 0 25 0 24 0 0 0 0 
0 0 0 I) 25 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 n I) 0 1 0 0 0 0 0 0 0 0 I) 1 0 0 0 0 25 0 :It) 
0 0 0 0 I) 0 0 0 0 0 0 0 0 51 1 51 0 0 0 0 0 0 
0 t) 0 I) 0 51 0 25 25 0 0 0 0 0 0 0 0 0 0 0 U 

-+ +
TABLE 1: Coefficients to lower bound safety margins M1 ' M1 ' Ml ' 

M~+, M~+ row by row defining 14 upper bound safety 

margins 

0 
0 

the structural system. Some results are summarized in Table 2. For com

parison the table includes the results of uniform directional simula

tion of a confidence interval estimate of the generalized reliability 

index of the discretized frame structure system. Otherwise the identi

fied upper bound margins can be used for defining an importance direc

tional simulation procedure for fast estimation of the generalized re

liability index [4,5]. 
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yield condition 

optimal lower 

bound of 13G 

<> 

4.53 

2 4.57 

3 4.62 

4 4.66 

5 5.05 

6 5.09 

7 5.14 

8 5.17 

9 5.53 

10 5.57 

11 5.62 

12 5.66 

13 6.74 

14 6.76 

[3.560, 

3.5603 

o 

4.57 

4.61 

4.70 

4.74 

5.09 

5.13 

5.22 

5.25 

5.57 

5.61 

5.70 

5.74 

6.86 

6.73 

105 

p '" r '" 0.5 

<> 

4.49 

4.52 

4.53 

4.57 

5.00 

5.04 

5.04 

5.08 

5.47 

5.51 

5.51 

5.55 

5.47 

5.49 

[3.563, 

3.5683 

o 

4.51 

4.55 

4.57 

4.61 

5.02 

5.06 

5.08 

5.11 

5.49 

5.53 

5.54 

5.58 

5.57 

5.52 

4.46 

4.50 

4.48 

4.52 

4.97 

5.01 

4.98 

5.02 

5.44 

5.48 

5.44 

5.48 

4.99 

5.00 

[3.596, 

3.6353 

0.8 

o 

4.47 

4.51 

4.50 

4.54 

4.98 

5.02 

5.00 

5.03 

5.45 

5.49 

5.45 

5.49 

5.07 

5.04 

upper bound of 13G 
using 4 first 

combinations 

[4.290, [4.349, [4.224, [4.257, [4.207, [4.225, 

4.2903 4.3493 4.2253 4.2583 4.2283 4.2473 

upper bound of 13 G 
using all 14 iden

tified combina

tions 

lower bound of 13G 
obtained by uni

form directional 

simulation *) 

average 

sample size 

[4.281, [4.339, [4.214, [4.247, [4.198, [4.216, 

4.2813 4.3393 4.2163 4.2493 4.2283 4.2463 

[4.26, 

4.283 

4.269 

40000 

[4.25, 

4.453 

4.33 

1000 

[4.17 , 

4.203 

4.189 

40000 

[4.12, 

4.153 

4.137 

40000 

*) The interval corresponds to the estimated mean ±k times the 

estimated standard deviation of the simulated probabilities. 

k = 0.675 (~ 50% probability interval) 

Table 2: Single upper bound margin reliability indices 13 i and 

bounds of the generalized reliability index 13 G (the bounds are 

bounded within interval~ for the frame structure system in Examples 

2 «~ and 3 (0). ay/~y '" 0.2. All variables are jOintly Gaussian. 
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Substitute yield conditions 

Assume that an upper bound safety margin corresponding to a given set 

A of yield conditions is obtained from Eq. 10. If the corresponding 

strain rates are admissible for another set B of yield conditions, 

then the linear combination obtained from Eq. 10 with unchanged coef

ficients c 1 , ... , c r and strain rates a1 , ..• , ar but with dissipa

tions calculated from the set B will be an upper bound safety margin 

corresponding to the set B. This is a direct consequence of the theorem 

and the fact that the dissipations are independent of the internal 

forces. Therefore, if the yield conditions of the set A give simpler 

computations than those for set B, it can be advantageous to use set A 

instead of set B given that set A is a reasonable approximation to set 

B. In particular, set A may be chosen so that the geometrical reliabi

lity indices become linear in the redundants. A sufficient condition 

for this is that the yield conditions of set A are polyhedral in 

(O.,Y.), i = 1, ... , r. Then the optimization problem is reduced to a 
~ ~ 

linear programming problem. Also the polyhedral approximation can be 

chosen so that the number of geometrical reliability indices exceeds n 

avoiding the problem of Eq. 15. Moreover, on account of the static 

theorem (the lower bound theorem) it is so that if the given yield 

conditions of set B are replaced by yield conditions which all are in

scribed in/circumscribing the yield conditions of set B, then the re

liability evaluation is affected to the conservative/unconservative 

side. 

Example 3. The same frame structure as in Example 2 is considered ex

cept that the yield condition in Fig. 2 is changed to the circle 

o (29) 

in all the potential yield hinges. Noting that the yield condition in 

Fig. 2 is inscribed in this circle, it can be concluded that the reli

ability against collapse is increased relative to the reliability of 

the structure in Fig. 2. 

Each set of the 14 strain rate vectors a 1 , a 6 obtained in Ex-

ample 1 define some linearly associated lower bound safety margins 

corresponding to the circular yield conditions at those hinge pOints 

at which the strain rate vector is not the zero vector. The linear 

combination of these linearly associated lower bound safety margins as 

defined by the corresponding coefficients c 1 ' .•. , c 24 is an upper 

bound safety margin for the structure of this example (both Q1' .•. , 
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U 6 and c l , •.• , c 24 can be read row by row from Table 1). Each upper 

bound safety margin is simply obtained by removing the yield strength 
s. 

term Yi from Mi 1 in Eg. 17 and instead adding the linear combination 

( 30) 

of Yl , ..• , Y6 to the linear combination clM~- + •.• + c24M~+. 
The upper bound reliability index results obtained by this con

struction are shown in the columns of Table 2 marked with O. As com

pared to Example 1 only a modest increase of the upper bound is ob

served. 

It turns out that the nonlinear optimization problem of Eg. 11 as 

defined for the 6 geometrical reliability indices corresponding to the 

circular yield conditions leads to a larger upper bound of the relia

bility index [6). However, this observation allows no general conclu

sions about methodological superiority. 
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1. INTRODUCfION 

Throughout this paper we consider the structure at a fixed point in time and the structure is 
assumed to depend only on the state of its components. Moreover, only two states are con
sidered: functioning and non functioning of the components and the system. Any system can be 
represented as a Series System of Parallel Subsystems (SSPS) or as Parallel System of Series 
System (PSSS). High reliability SSPS are handled by PROBAN, a program developed at Det 
Norske Veritas and The Technical University of Munich. A SSPS may be reformulated as PSSS, 
this may however be very large. The scope of this paper is therefore to develop methods for 
computing or bounding the reliability of parallel systems of series subsystems. In a number of 
applications it is desired to deal with such systems. One example is the computation of the reli
ability of the tether system of a Tension Leg Platform. Other examples of PSSS in Structural 
System Reliability are provided in Madsen and Skjong (1984) and Madsen et al (1986). Barlow 
and Proschan (1975) provides examples from other fields. 

Section 2 reviews some of the basic concepts in addition to formulating the problem in detail. 
Section 3 presents the general method and a useful combinatorial formula is derived. Some 
important special cases are dealt with in Section 4. The general setup does not depend on any 
particular distribution of the components. In Section 4. however. the components are assumed 
to be multinormally distributed. 

2. BASIC CONCEPTS 

The general system consists of M components. Series number i contains N; components. In 
some cases the representation of the system can be determined directly by inspection. The 
minimal cuts and minimal paths are useful when identifying the system representation. A path 
vector is a set of components which. if they all function. assures that the system functions. A 
minimal path vector is a path vector which cannot be reduced without ceasing to be a path vec
tor. Paraliel Systems of Series Systems are defined uniquely by their minimal path vectors. 
Equivalently. the minimal cut vectors determine the system. The minimal path vectors are the 
series in Figure 2.1. The figure also shows a typical minimal cut vector k = C k Cl) ..... k CM)). 

The reliability problems we have in mind can be formulated in terms of random variables 
U ! ... ·.Ud and the state functions defined by 
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<0 failure set 
=0 state surface i = 1 •...• M j = 1 •...• N I 

>0 safe set 

--- --e-----
Q1K(1) 

-----&-- -- ---
9M1 9MK(M) 

Figure 2.1 Parallel System of Series Systems. 

(2.1) 

{Oor ease of notation we put Xi) = gij (U) recalling that the particular distribution of gij (U) Is 
of no signifIcance as far as the general method Is concerned. The announced precise formulation 
of the problem Is to compute 

M N, 

P (system failure) = P (n U {XI) ~ O}) (2.2) 
1=1)=1 

M 
for large systems. There are II NI minimal cut vectors. In general. the number of minimal cut 

1=1 

vectors determines the numerical complexity of the problem. The last Section Includes a sys
tem with M = 6 series and N = 20 components In each series Implying that there Is a total of 
206 = 64'106 minimal cut vectors. 

We close this section noting that the problem In question may be formulated entirely without 
reference to reliability problems: namely as that of computing (2.2) 

3. THE METHOD 

The basic idea Is to expand the system failure set Into a disjoint union. This allows the proba
bility of system failure to be written as a sum which Is eaSier to handle than (2.2). 

To each minimal cut vector k we associate the corresponding disjoint cut set 

{cutkl= {Xu> O •...• X Ik (l)-1 > O.XIk(l) ~0,X21 > O •... • XMk(M) ~Ol (3.1) 

Since 

system failure set 

is a disjoint union 

P (system failure set ) = L P (cut k) 
k 

(3.2) 
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The number of safe sets In {cutt} is n {k);'; k {I)-I+ ... +k (M )-1 = s. say. The number of dIs
joint cut sets with s safe sets Is denoted by c (s). for Instance c (0) = I • c (1) = M and 

!M+I! c(2)= 2 • 

In this section we derive a formula for c (s ) In terms of s • M and N I • The usefulness of this 
formula Is especially apparent for systems with exchangeable components; I.e. when all subsets 
of X = {XI} } of equal cardinality have the same distribution. Then different disjoint cut sets 
contribute with the same probability content provided they contain the same number of safe 
sets. Writing {cut kl = {cut (s )lln this case. It follows that 

L-M 
P (system failure ) = r. c (s ) P (cut (s )) (3.3) 

.=0 

where L = r.Nj. In the general case. denote by {cutmax (s)} and {cutmin (s)l. respectively. 
the largest and smallest disjoint cut sets with s safe sets. Then 

L~ L~ r. c(s)P(CIltmin(s)) ~P(system failure )~ r. c(s)P(cutmax(s)) 
.=0 .=0 

The quality of the inequalities depends on 
K-M 

(3.4) 

r. c (s ) [ P (cutmax (s ))-p (cutmin (s ))] (3.5) 
.=0 

and the number of terms needed to achieve good approximations. Of course. more sophisticated 
bounds are possible at the cost of Including more than merely the probability contents of the 
smallest and largest disjoint cut sets. 

To derive a formula for c (s ) it Is convenient to consider systems with Identlcallndepen
dent components. Letting 

p =P(XI} ~O) • i = I ..... M and j = I ..... N I 

we may write 
L-M 

P(system failure) = r. C (l) pM (1-p Y. 
1=0 

On the other hand 

M N"'"1 
P(system failure )=pM[II(l+(1-p)+ ... +(1-p) ' )) 

1=1 

(3.6) 

(3.7) 

since system failure Is equivalent to the failure of all series systems. Hence. by comparing the 
expressions (3.6) and (3.7). It Is seen that c(l) Is obtained as the coefficient of x' = (I-p Y In 
the polynomial: 

M 
II(1+x+ ... +x N,-I) (3.8) 
1=1 

A routine generating the coefficients has been written solving the problem of counting the the 
number of disjoint cut sets. 

Some comments on the special case N 1 = ••. = N M = N are due: By (3.8) and the for
mula for the sum of a geometric series we get 

M(N-I) N M r. C(l)x l = [..!=!.-) (3.9) 
1=0 I-x 

The Taylor series expansion of the right side of (3.9) around x = 0 provides the closed formula 
(l = O ..... M (N -1)) 

I N M 
C(l)=...lL[~) 

l! ax' I-x i=o 
(3.10) 
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When l < N the nature of the problem implies that C Cl) is independent of N. l times 
differentiation produces 

C(l)= [M~l-lJ (3.11) 

The last formula also follows from a combInatorial argument: [M+f-lJ is the number of 
ways of choosing l objects from a collection of M when each object may chosen several times. 
corresponding to the fact that there may be several safe sets from each series. 

Example 3.1 
It suffices to consider a very small system to illuminate the concepts above. There are 

M =3 series and N =3 components In each series of the structure. Assume the components XI} 
are identically normally distrIbuted wIth safety index 

_ E(XI}) _ 

{3 - SD (XI}) - 2.0 

and equicorrelated with common correlation coefficient p = 0.9. Then 
M N, 

P (system failure) = P (n U {Xlj ~ aD 
1=1 } =1 

3 3 
=p(n U{Z ~-(3D=0.895·1O-2+ ... +0.79l·1O~1I=0.22:i·1O-1 (3.12) 

1=1 }=1 
where Z is a standard normal varIable. Further numerical details are provided in Table 3.1 
below. 

Table 3.1 Disjoint cut method 
#SAFE c (.) c(')P(cut(s)) 

0 1 0.89510 2 
1 3 0.53510-2 
2 6 0.40610-2 
3 7 0.22310-2 
4 6 0.11410-2 
5 3 0.35510-3 

6 1 0.79110-4 

Consider next the system above with the {3-s generated uniformly on [1.5.2.5]. 

Table 3.2 Bounding disjoint cuts 
#SAFE P (cucmin (s )) P (cut max (s )) c (s ) P (cutmin (s )) c (s ) P (CUCmax (s )) 

0 0.26610 1 0.26610 1 0.26610-1 0.26610 1 
1 0.377 10-3 0.151 10-2 0.11310-2 0.45410-2 
2 0.29610-4 0.71610-3 0.17810-3 0.42910-2 
3 0.151 10-5 0.45910-4 0.10510-4 0.32110-3 

Ignoring disjoint cut sets of dimension higher than 3 and using the bounding formula (3.4) It 
follows that 

0.277 '10-1 ~ p( system failure ) ~ 0.357 .10-1 (3.13) 

whereas the exact answer is P (system failure ) = 0.318 ,10-1. In this case {cutmax (s)} and 
\cutmin (s)} were found by computing the probability contents of all disjoint cuts and sorting. 

The above example is only meant to illustrate the method. In fact. the above example is 
handled more effiCiently by the methods in the next section. 
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4. THE NORMAL CASE 

Throughout this section it Is assumed that the components are normally distributed. This Is 
the case If U l' ••• ,Uti. are normal - possibly after a transformation - and the limit state func
tions g,} (u) are linear. Moreover, introducing the standard normal variables 

(i = 1, .•. ,M j = 1, •.. ,N,) 

_ X,} -E (X,} ) 
Z,} - SD (X,} ) 

and the safety Indices 
_ E(X,}) 

13,} - SD (X,) ) 

the problem Is to compute 
M N, 

P (system failure) = P (n U Z,} ~ -13,} ) 
1=1}=1 

(4.1) 

(4.2) 

(4.3) 

Rcstricted correlation structure 

For general correlations structure 
assumIng that 

no simple expression for (4.3) is obtaInable. However, 

P(Z,} ,Zkl ) = P,} Pkl < 1.0 (4.4) 

we derive a closed formula for the failure probabIlity involving essentially only one integra
tion. The model in Madsen et al (1986) corresponds to the case N, = 1 , i = 1 , ... ,M. Letting V, 
and V,} ,i = 1, ... ,M ,j = 1, ... ,N, be independent and standard normally dIstributed, we may 
write 

(4.5) 

Conditioning on V and denoting by <I> and «) respectively the dIstribution function and density 
of the standard normal variable, it follows that 

00 M N, 

P(systemfailure) = J II P(U {PI}" +{I-pI3)lIl V,} ~-l3i}})<be")d" (4.6) 
-00/=1 }=1 

sInce the components are independent given V. The probabIlity in the integrand may be 
rewritten 

I-P( ~ V, ~ -13,} -PI}") = [1- Ii <1>( 13,} +P,}" )] 
}=I} (l-Pi3)'/l }=l (l-PI3)lIl 

leading to the closed formula 

Joo M N, 13 +p " 
P (system failure) = II [1- II <1>( I} 2 ~1/l )] <be v) dv 

-00/=1 }=1 (I-PI} 
(4.7) 

Remark that no computational problems arises for large systems in thIs case. 

Example 4.1 

This example expands on Example 4.4 in Madsen et al (1986) where a bar loaded by a time 
varying axial load S (t ) is considered. The resistance of the bar is a deterministic constant r. 
The variables S 1,,,,,SN have the second moment representation 

E(S,)= Jl.. 

and 

(4.8) 

(4.9) 
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COy CS/.S)) = pa;-

The probability of the bar failing is 

where 

N N S/-p.s N 
PC U Cr-SI) ~ 0)= peu --);?; f3I1L )= P( UZI) ~ -f3}fL) 

1=1 1=1 as 1=1 

r-p. f3I1L = __ s 

as 

C4.1O) 

(4.11) 

is the Hasorer-Lind reliability Index. Our generalization amounts to consider M bars In paral
lel implying that system failure coincides with the failure of all bars. The loads of bar 
b ( b = 1 ..... M) are Sbl ( i = 1 ..... N) and they have the same marginal distributions and correla
tions as above. c.r. Figure 4.1. (There is no load redistribution). 

Sb1 
Sb2 ••• 

IISbNI 
time 

Figure 4.1 Bar loaded by time varying axial force. 

From 4.11 and 4.7 It follows that 

M N M N 
PI =P(systemfailure)=p(n U(r-SI)~O)=p(n UZij ~-f3HL) 

/=1)=1 1=lj=1 

Joo (3 +p1/2v M 

= £1-q,N( t~ )112))] cb(v)dv 
-00 1 P 

The generalized reliability index Is 

(3G = q,-I(l-PI ) 

(4.12) 

(4.13) 

Figure 4.2 shows how f3G varies as a function of P. Nand M. The picture Is somewhat more 
complicated than for series systems where f3G Increases monotonically in p. 
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N-U' H.18 

N-'8 H-'88 
N-,8 H-'""" 

Figure 4.2 The generalized reliability Index (3G as function of p for several values of M 
andN. 

General correlation structure 

When there are no restrictions on the correlation structure we can In principle compute all dis
joint cuts by applying the Hohenbichler Integral (1982). This is not feasible within reasonable 
computer time for large systems and we are left with the previously described bounding tech
niques. Let Xk be the components of the disjoint cut set Indexed by k. Moreover, assume Xk Is 
normally distributed with positive definite correlation matrix Lk and E (X) = O. In order to use 
the upper bound 

L-M 
P(system failure )~ L cCs) P(cutmax (s)) (4.14) 

.=0 
we need to determine 

P (cutmax (s )) = max P (Xk ~xk) = max P (Xt ~-xk) 
It : n (k) = s k : n (k) = s 

(4.15) 

To make these probabilities comparable we transform to Independent standard variables Y It 
defmed by 

Y k = Lk"I/2Xk 

The largest disjoint cut set Is selected as the one which minimizes 

(3f= Y~Yk 

(4.16) 

(4.17) 
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subject to 

I:~/2Yk>-Xk 

the Idea being the same as the one which underlies the general reliability Index. We tried the 
procedure using PROBAN finding that the ordering of the (3's reflects the ordering of the proba
bilities. However, the constrained minimization problem have to be coded specifically for the 
problem at hand for the procedure to be useful; the minimization problem In PROBAN alms at 
far more general problems than we consider. 

In the following example we investigate the numerical quality of the previously outlined 
bounding technique closer. 

Example 4.2 

The system consists of M = 6 series and N = 20 components In each series. We generated the 
f3ij -s uniformly on [2,5]. The correlation structure Is given by 

p(Xij ,Xkl ) = 0.9 1k -II +1 Cij )~(kl) (4.18) 

and the components are marginally standard normal. Each series Is sorted by Increasing (3's. 
All disjoint cuts of dimension less than 11 were computed using the Hohenblchler Integral. The 
probabilities were sorted and the upper bound was based on the 3 largest disjoint cut sets. To be 
more specific, let the 3 largest disjoint cuts of dimension s In descending order be cud l,s) 
cut(2,s) cud3,s). Then the upper bound is 

114 
cut (1,0) + E I cut ( l,s>+ cut(2,s) + (c(s)-2) cutO,s)} (4.19) 

0=1 

In Table 4.1 the cumulative upper bounds are denoted 'UPPER'; the analogous lower bounds are 
called 'LOWER'. The correct numbers are entered under 'RIGHT'. 

From Table 4.1 It Is seen that the bounds based on 7 safe sets are 
0.006 ~ P(system failure) ~ 0.035. The corresponding bounds derived using only the smal
lest and largest disjoint cut sets are 0.005 ~ P(system failure) ~ 0.121. 

Table 4.1 Bounding disjoint cuts 

#SAFE c C·) LOWER RIGHT UPPER 

0 1 0.00339 0.00339 0.00339 
1 6 0.00571 0.00715 0.00828 
2 21 0.00590 0.00779 0.00943 
3 56 0.00596 0.00832 0.01137 
4 126 0.00598 0.00877 0.01450 
5 252 0.00590 0.00913 0.01901 
6 462 0.00600 0.00943 0.02858 
7 792 0.00600 0.00964 0.03537 
8 1287 0.00600 0.00976 0.04484 
9 2002 0.00600 0.00984 ,,0.05070, 
10 3003 0.00601 0.00988 0.05792 

5. SUMMARY AND CONCLUSIONS 

In the paper the problem of estimating the reliabllity of parallel system of series systems has 
been addressed. The general method Is based on the disjoint cut set expansion of the system 
failure set along with a formula for counting the number of disjoint cut sets. For the mul
tinormal case with a special correlation structure it is demonstrated that the probability of sys
tem failure involves essentially only one Integration. Several examples are provided. 
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RANGE-MEAN-PAIR EXCEEDANCES 

IN STATIONARY GAUSSIAN PROCESSES 

D. G. Ford 
Aeronautical Research Laboratories, Melbourne. 

1. INTRODUCTION 
One of the most important stress (or stress intensity) parameters in fatigue 

is the range-(mean)-pair or rainflow count[I,2]. The distribution of rainflow am
plitudes has recently been discussed by Rychlik and Lindgren[3,4,5]. However 
counting is more easily discussed in terms of range-pair exceedances[6], rather 
than occurrences, paralleling the usefulness of load exceedance counters[7] for less 
accurate fatigue estimates. In this paper we discuss the first passage time for an 
exceedance of a range-pair with fixed amplitude and mid-value. 

For many practical cases it is also true that the stress response of a structure 
may be regarded as a stationary random process which is the output of white or 
coloured noise filtered by a linear system[8,9]. General load histories may often be 
regarded as eras of different stationary processes joined in sequence. This includes 
the important cases of differing sea states and atmospheric turbulence[lO] in which 
the process variance follows a folded Normal density. 

There are several equivalent ways [6] of establishing the passage of a range
pair exceedance, all based on the successive first crossings of the two defining 
levels u and v. In the discussion below we define an exceedance by two first 
upcrossings of u and v in succession. Although such an occurrence is sufficient for 
counting, the time taken must begin from the last upcrossing, of the first level, 
which establishes the previous count. We closely follow Reference Ill], Cramer 
and Leadbetter, which will often be denoted CL. However the overall approach is 
also similar to that of Rice and Beer[13] and we derive a similar approximation to 
avoid parent densities of arbitrary order. The Sections 2.3,2.4,3.1,3.2 and 3.3 are 
introd uctory. 

We conclude with brief discussions of the exact density, asymptotic results 
and the application to linear systems. 

2. GENERAL MODEL 
An exceedance of the type described is shown in Figure 1. Here X(t) is a 

stationary Normal process of unit variance,mean zero and a given covariance (and 
autocorrelation) function r(t) for which 1-(0) = 0 to ensure that the realizations are 
differentiable almost everywhere [12]. It also has a finite second spectral moment 
oX to ensure the existence ofT(t) and continuity of X(t) [12]. oX is also the variance 
of the derivative process X(t) as one may see by regarding the Fourier transform 
as a moment generating function. 
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2.1 Curve Crossing Approach 
Under the described conditions X(t) is regular [11] and separable. The ex

pected number of recurrent events (crossings here) in an interval (t,t + dt) can be 
written 

E(dU) = w(t)dt + o(dt) (2.1) 

where w(t) is an intensity of occurrence. From the viewpoint of an ensemble (2.1) 
is also a Binomial probability for the interval dt. We may therefore follow the 
approach of Cramer and Leadbetter(CL)[8] and consider X(t) as the limit of finite 
dimensional processes defined by r(t) at the times 2-n k. As in CL this approach 
may be adapted to crossings of curves and for our purposes these are chosen to be 
ABCD and DEFG of Figure 1. 

X(t) 

o 
k~O 

v 

I TIME tJ 
\2 3 
I , 
c 

I 
X(t) 

t 

I 
I , , 
Irn 
I 
I 

F 

FIGURE 1 RANGE-PAIR EXCEEDANCE OF (u, v) OVER TIME T 

As required by the analysis the dashed sections r n place the curves in C[D, T] 
and the transition BC is always in the first interval after D. The limiting process 
n --+ 00 is done for fixed t, T and then t is removed by convolution after averaging 
over extraneous random slopes. 

In CL the finite dimensional densities approximate the regular crossing den
sities w(t) at T regardless of previous occurrences; for range-pair times only first 
crossings can be considered. We first validate the extension of the curve crossing 
analysis to limiting curves E C2 and then consider the first crossing as part of a 
pure birth process. 
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2.2 Validity of Combined Limits 
At this stage we must ensure that the effect of crossing a "moving" curve 

r" as n -. 00 can be neglected. Before proceeding we let the polygonal function 
X,,(t) E e[O, T] approximate X(t) as n -. 00 using the successive curves r n, r n+1 
etc. We now use wn(t) for the crossing intensity of Xn(t). 

If the limit exists 
T 

fiw(t) - wn(t))dt ~ Tllw(t) - wn(t)11 
o 

using the maximum norm on [0 T] which exists for a regular process if some 
isolated points are excluded. 

o t 

FIGURE 2. SEQUENCE OF TRANSITION CURVES TO BE CROSSED. 

Now one may write 

Tllw(t) - wn(t)11 = (3 * 2-n+1 + (T - 3 * Tn+l)) Ilw(t) - wn(t)lI, (2.2) 

abstracting two time intervals of size [2- n - 1,2-n+1] containing successive transi
tions r n,r n+l between the two levels. 

In equation (2.2) r n is associated with wn. Ifr n had been used for all w",k < n, 
then (2.2), arrived at by a finite number of steps, would still be obtained. Now 
consider w~+1 which still uses r n. In this way a sequence w~+1 can be countably 
defined for all n. 

We now need to show that w~ -+ w, assuming uniform continuity of w(t). 
Firstly, if M is some constant, 

for all rn. 
Then 

Iw(t) - w~(t)1 = Iw(t) - wn(t) + wn(t) - w~(t)1 
< Ilw(t) - wn(t)1I + 3MTn- 1 (2.3) 
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J (w(t) - w~,(t))dt ~ Tllw(t) - w~(t)11 
u 

~ 3 * Tn-1(llw(t) - W,.(t)11 + 3M2-n- 1 + (T - 3 * Tn-1)llw(t) - wn(t)11 

-t 0 

The terms without T correspond to the upper limit so that a fortiori: 

w~(t) -t w(t) 

and one may safely use moving curves r n in the CL procedure. 

2.3 First Crossings 
The crossing density w(t) for any stationary or non-stationary process defines 

the probabilitY[12] 
w( t)dt + o( dt) (2.4) 

that just one crossing occurs during (t, t + dt). With respect to the time origin 
this is an n-th crossing for n = 1,00 which can be regarded as a pure birth process. 
If Fi(t) is the distribution of i-th crossing times then 

Fi(t + dt) Fi(t) + fi(t)dt + o(dt) 
= Fi_dt)w(t)dt + Fi(t)(1 - w(t)dt) 

or 
F/(t) + W(t)Fi(t) 

with the recursive solution 

t t 

Fi(t) = J W(t')Fi-l(t') exp( - J w(t)dt)dt'. 
o V 

For Fo(t), the probability for no crossings, the birth equation is 

Fo(t) + F(~(t)dt = F1l{t)(1 - w(t)dt), 

with the waiting time type of solution 

t 

F!j(t) = exp ( - J w(t')dt'). 
o 

which may be called an exclusion factor. 

(2.5) 

(2.6) 

(2.7) 
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With (2.5) and (2.6) this leads to a first crossing density In the form of a 
reliabili ty density 

t 

/I(t) = w(t) exp( - ! w(t')dt'). (2.8) 
o 

When w is constant one is led to the well known relations between waiting times 
and occurrences for the Poisson process. These formulae are analogous to those of 
Rice and Beer[lO] where they are a probability for the absence of intermediate ex
trema. Like them they are conditioned on events at particular times, as described 
below, and exact results would be conditioned by all the necessary events E (0, T). 
The discussion in [10] applies here with minor changes and a similar accuracy is 
expected. However further dissection of the events is also required as described 
below. 

In (2.4) the probability w(t)dt may refer to a union of mutually exclusive 
sub-events which gives it the nature 

w(t) = L W(tJAi) Pr(Ai) = L w(t n Ai) . 
• 

If any of these components is taken separately the analysis in Section 2.4 may be 
repeated to return a formula like (2.8) for h(t n Ai), a crossing combined with 
the side condition Ai. This we do not wantj the factor (2.7) in (2.8) would merely 
exclude Crossings n Ai before the time tj we would like to exclude all prior 
crossings. 

The argument from (2.4) to (2.8) is also applicable if each i-th crossing 
is also associated with its own side conditionj this of course will reduce Fi to 
Pr(Ai) Fi(tJAi) and suitable crossings will be less frequent. 

Our only interest here is in first crossings and (2.8) may be extended to 

Pr(First crossing n Ai) = Pr(Any crossing n Ai) Pr(All prior crossings excluded) 

or symbolically 

t 

w(t n Ai) exp( - ! w(t')dt'). 
o 

(2.8A) 

This may be proved as above; the side condition on F() is the whole event space U 
or, colloquially, it is anything and there is no restriction so that (2.7) is retained_ 
as above. The next recursion, now with Ai leads to (2.8A). 
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2.4 Distribution of Total Time 
In (2.8) and (2.8A) the density embraces any allowable vector of crossing 

slopes but these are correlated with the ordinate densities everywhere so that they 
must be treated separately. In particular, convolution cannot proceed before the 
crossing densities are summed over slopes for a particular set of times 0, t and Tj 
conditioned convolutions cannot be combined into one that is not conditioned. 

In (2.8) let w = Wt describe second upward crossings (D in Figure 1) and 
put WT for the density of the third crossings (at G say) necessary to establish the 
range-pair time. It is convenient to compute WT with respect to the same time 
origin so that with the same side conditions 

T 

It (T - t n Ai) = wT(T n Ai) exp( - f w(t')dt'). 
t 

Now consider the particular rainflow exceedance at T for which t is the second 
crossing time. The double crossing density with side conditions may be written as 
w(t T n AiIO). To contribute to a range-pair count two exclusion factors like (2.7) 
are also needed. However these must exclude more than merely Ai-types of prior 
crossings. 

For the first phase (2.7) is replaced by 

t 

exp( - f w(t'IOtT)dt') 
o 

for level v at t' whilst at level 1L there is a second factor 

where 

T 

exp( - f w(t'IOtT)dt') 

w(t'IOtT) = Lw(t'IOtT Aj)Pr(Aj). 
j 

In (2.9) the levels crossed are of course {1L V V 1L} and {1L V 1L 1L} respectively. 

(2.9) 

(2.9A) 

Let us now write It (t, Tn AiIO) for the reduced probability density of the 
particular rainflow count suggested by the notation, with the side condition Ai. 
Without loss of generality these are disjoint and 

and the extension of Ai to a continuous random variable is obvious. We therefore 
change from Ai to Z ,... F(z). 
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Our desired density of time to the first range-pair exceedance is 

T 

!l(T) = ! ft(tTIO)dt 
o 

corresponding to a convolution of two independent intervals (O,t) and (t,T). Our 
intervals however depend on Z and if this dependence is exposed then 

T 

ft(T) = ! dt! ft(tTIOz)dF(z) 
() 

T T ! ! w(tTIOz)dF(z) exp ( - ! w(t')dt')dt. (2.10) 
o 0 

Here 
wet') = w(t'IOtTZ) 

but the crossing level is v or u according to whether ° < t' < t or t < t' < T. It is 
convenient to still call the form (2.10) a convolution and this we do. 

2.5 Slope Conditions 
By definition (2.10) is conditioned on X(O) = u, X(t) = v and X(T) = u. To 

ensure crossings it will also be necessary to consider the joint density of Xi and 
Zi = Xi so that (2.10) strictly applies to the limiting case ft(Tlu v u Zo Zl Z2). The 
first three conditions, on levels reached, are of course intrinsic to the problem but 
the slopes Z = {Zo Zl Z2} are extraneous, forming the side conditions introduced 
above. If desired variable thresholds u(t) and vet) could be used but this has not 
been done. 

The convolution integral with respect to t in (2.10) means that h(z) depends 
on t because of variation in the separation times t and T - t. Thus wet Tlo) must 
be averaged over positive components of Z before convolution as in (2.10). 

With these explicit conditions (2.10) must be specialised to 

Toot T 

ft(TIZ > 0) = / dt / dF(z)w(tTloz)exp( - ! wl(t)dt) exp( - ! w2(t)dt). 
o 0 0 t 

(2.11) 
In words, this is the density function of the time taken for a triple crossing on the 
condition of positive slopes at 0, t and T. The similarly conditioned intermediate 
crossing probabilities WI and W2 are derived from the unconditional multiple cross
ing/slope densities w(O t T z), w(O t' t T Zi z), derived below, which lead to most of 
the necessary manipulation. 
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From conditional probability 

Wi == w(t'IO tT z) 

and for 
i = 1 Crossing level v with 0 < t' < t 
i = 2 .. u with t < t' < T. 

w(Ot'tTz) 
w(OtTz) 

(2.12) 

The actual form of these crossing densities will be found in Section 4 after 
further discussion of Ix z(x z). 

3. DENSITIES AND CONDITIONAL DISTRIBUTIONS 
Consider details of I X(Xi), using the covariances from the finite-dimensional 

densities. Suppose the times 0, t, T correspond, with subdivisions of 2-n , to the 
zero-th, k-th and K-th interval. Where convenient the notation will be abbreviated 
by writing some functions in their limiting form, taking advantage of proofs in 
CL. 

3.1 Conditional Normal Densities 
We will be concerned often with conditional Normal distributions and there

fore collect the relevant standard results here. 

Let Y = {Xo X} be Normally distributed with the density 

where A -1 == E is the covariance matrix and the means JLy = {JLO JL}. 

In general if A, D are regular one may write 

The four equations here implied have the solution 

E = (A - CD-1B)-1 J = (D - BA-1C)-1 
G = -D-1BE = -JBA-1 F = -A-ICJ = -ECD-I 

where the last equalities come from a commuted version of (3.2). 

Apply this to the symmetric covariance matrix ET = [~z: ~:z] 
to obtain 

",-1 [ E 
~T = -JE E- 1 

zu u 

which establishes some notation for later use. 

(3.2) 

(3.3) 

(3.4) 
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3.2 Density Exponent 

If Xo is given the quadratic form in the exponent may be written 

[(xo - Jlo)t (x -- Jl)t] [:: 5] [x~ = ~o] 
= (x - M)tJ(x - M) + (xo - JlO)tE~l(XO - Jlo) 

where M c-= EZIlE~l(xO - Jlo) + Jl. 

(3.5) 

(3.6) 

(3.6A) 

To prove this the form of M is obtained by equating those parts of (3.5) and 
(3.6) which are linear in x or xt. It must then be shown that Mt JM from (3.6A) 
accounts for all the constants in (3.6). 

Putting Zo = Xo - Jlo and z = x - Jl, (3.5) becomes 

[z&zt]ETl [:0] = ztJz + z&Fz + ztFtzo + z&Ezo 

= ztJz + zJJ-1FtzO + z&FJ-1Jz + z&Ezo 

= (z - EZIlE~lzO)tJ(z - EzuE~lzO) + z&E~lzo 

from (3.4); this is the desired result. 

The partitioning (3.7) corresponds to the identity 

and when the densities are Gaussian normalisation demands that 

(3.7) 

(3.8) 

The results (3.6), (3.7) and (3.8) apply for any partitions, in particular when either 
Xo or the conditioned variate Z is scalar. 

For single variates 4>(ax) shall indicate the unit Normal density function, used 
with an explicit normalising factor if a =I- 1. 
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3.3 Slopes and Crossings 
Put Tk for the covariance of X with the lag 2-- n k. Then for the quantities of 

interest, associated with subdivision intervals 2-", 

R = E{X - JL}[X - JL]t 

1 Tt Tk Tk+l TK TK+l 
Tl 1 Tk-l Tk TK-l TK 

Tk Tk-l 1 TI TK-k TK-k+l 

Tk+l Tk TI 1 TK-k-l TK-k 

TK TK-l TK-k TK-k-l 1 Tl 

TK+l TK TK--k+l TK-k Tl 1 

using stationarity. The means JL are given by r" above at the times 2-", 2-"k etc. 
We are now interested in local slopes (Fig.3) approximated by 

Zk = 2"(Xk+l - Xk) = [_2" 2"] [~:l]. 
This forms a part of 

[ ~:] = s [~:J where S = [-;" 2°"] 

When triplicated this mapping leads to the transformed variates 

z ~ [~ S ~ 1 (X - pJ 

= A(X -IL), 

say, with the covariance matrix ARAt. This has the typical submatrix 

S [ TK-k 
TK-k-l 

TK-k+l] st = [ TK-k 
TK-k TK-k-l 

where {; refers to the appropriate central difference of T. 

Along the diagonal submatrices 

TK-k = 1 and 2"{;TK-k+l/2 ~ -;'(0) 

as n ~ 00. This is zero here and the last element ~ >. = -7=(0) if we remember 
the symmetry of T(t). 

Off-diagonal elements converge similarly to the appropriate derivatives so that 
in a notation which emphasises actual times 
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r(t) -r(t) 

r(t) -r(t) 

r(t) 

-r(t) 

1 
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r(t) 

-r(t) 

r(T) -r(T) r(T - t) -r(T - t) 

r(T) -r(T) r(T - t) -r(T - t) 

r(T) r(T) 

-r(T) -r(T) 

r(T - t) r(T - t) 
(3.9) 

-r(T - t) -r(T - t) 

1 

A 

similar to the covariance matrix used by Rice and Beer[13J. In the corresponding 
CL calculation the diagonal submatrices are related to Pnlc on page 286 which 
is stationary. Here however there are time varying coupling matrices containing 
r(t), r(t), r(T) etc. which determine the conditional densities of Pnlc. However 
the CL arguments of dominated convergence are not affected by this or by our 
premature passage to the limit which has been anticipated in order to simplify 
notation. 

3.4 Joint Density of Thresholds and Slopes 
In CL the expected total crossing rate w(t) is determined for downslopes at 

time t and the final result is an average over these slopes for a process density 
conditioned upon X(t). 

To reach (2.11) with a given exclusion factor we are given three upslopes to 
average over in a density with three crossing levels. We first rearrange the variate 
Z as {XOXtXTZOZtZT} with mean values {uvuOOO} for crossing levels rn. 

r(T) 

r(T - t) 

-r(T) 

~r(T - i) 

A 

say, with inverse, conditioned matrices and means from (3.4) to (3.6A). 

(3.10) 
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4. CROSSING DENSITIES 
The machinery above will now be used to find the conditional densities (2.12) 

in Section 2.5. These require unconditional triple and quadruple slope/crossing 
densities w(O t T z),w(O t' t T Zl z) and w(O t t' T Z2 z). 

The derivation of first crossings under slope conditions has already been dis
cussed in Sections 2.4 and 2.5 where it transpired that densities of triple and 
quadruple conditioned crossings were needed. Single crossings were first discussed 
by s.o. Rice[13] though we follow CL[8] to obtain w,w(OtTz) etc. as limits of 
the corresponding discrete processes wn, wn(O t T z) over time steps 2-n. 

4.1 Defining Events 
The conditions and events which define a range-pair period are: 

A U pcrossing of u at t = o. This a prior condition whose probability must not 
be counted since it has already confirmed the previous range-pair exceedance. 

B First upcrossing of v at time tlA ie. first after A 
C of u·· .. TIB. 

To discuss "first" upcrossings or "first after ... " one must consider the gen
eral density of crossings, first or otherwise. Furthermore we must begin with the 
unconditional crossing densities. 

As we have seen the definition of range-pair periods in terms of first crossings 
involves simultaneous slope and crossing conditions for one old followed by two 
new crossings in succession. Each set of the events A, Band C above must be 
conditional upon common slopes. The resultant rainflow count is similarly condi
tioned and the density must be averaged over the three slopes before convolution 
as in (2.12). 

Condition A may be divided into mutually exclusive subsets which represent 
different ranges of upcrossing slopes. Within each such condition the upcrossing 
slopes for Band C also form a mutually exclusive family. 

In CL the condition A is absent but the event B is similarly divided. There 
the crossing density is integrated over B-slopes to obtain the integrand of their 
(13.2.1). Our approach will be similar but AnBnC leads to an averaging over 
slopes for A, Band C as well as slopes for excluded intermediate crossings. 

As in CL the regularity of the basic process means that for a single crossing 
density 

w(tIA)dt = E(Crossings) 

= L iPr(i crossingslA) 

= Pr(B C dtlA) + o(dt) 
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with some abuse of notation. For the two crossings needed the ra.nge-pair 
count rate satisfies 

w(tTIA}dtdT = E(Simultaneous crossings(sc's)) 

= L iPr(i sc's C dt dTlt T A} 

= Pr{B nee dt dTIA) + o{dt dT). 
We now consider a single upwards crossing, concentrating on the events which 
define it. Since the result is the limit of that for a discrete process consider a stage 
n when the time interval is 2- n . To save notation, densities will be written in their 
final form but convergence proofs can be developed. 

FIGURE 3 UPWARDS CROSSING OF n-th APPROXIMATE PROCESS 

A single upwards crossing is shown in Figure 3 for the n-th discrete member 
of a sequence tending to the separable continuous process with derivatives. In 
terms of events from Figure 3, 

Upwards crossing = {X2 > u , Xl < u} 

( 4.1) 

dropping the subscripts. With suitable Z values or slopes any X < u can be 
associated with an upwards crossing and all positive slopes are allowable. 

Integrating over the region (4.1) 
00 u 

T nW n (2- n )+O(2-n )=jdZ j Ixz{xz)dx (4.2) 
o u-2-U z 
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which corresponds to (13.2.4) from CL for downcrossingsj essentially by the same 
derivation. 

For a given slope Z (4.2) obviously reduces to 

u 

2--nwn (T n n z) = Iz(z) f I xlz(xlz)dx (4.3) 

u-2-n z 

or, interpreting 2- n z as zdt, 

wn (2- n n z)dt = z/Z(z)IXlz(ulz)dt 
or in the limit 

w(O z) = zlx z(u z). (4.4) 

Integration or direct argument from (4.2) leads to 

00 

w(O) = f zlx z(u z)dz, (4.5) 
o 

half the standard CL result (their (10.3.1)) because only upcrossings have been 
counted here. 

For multiple crossings there are results analogous to (4.4) and (4.5) j crossing 
levels are substituted into appropriate joint densities Ixz(xz); the conditional 
joint crossing densities are proportional to Zo, Zt, Zo· Zt etc. so that the uncondi
tional crossing densities are partial expectations of the products between allowable 
slopes. 

It is now possible to evaluate (2.11) and (2.12). For the latter it is most 
convenient to find Wi n Zi and integrate; as (4.5) follows from (4.4). The double 
density w(tTzIO) in (2.11) comes from the multiple-crossing analogue of (4.4) and 

cPx z(x z) = ~IETI-l/2 exp{ _~[xt zt]ET -1 [x]} 
(21\") 2 z 

as 
w(tTzIO) = ZOZtZTcPXZ(UZ)!cP(u) (4.6) 

where u = {u v u}, E[X Z] = 0 and Zo, Zt and ZT > o. For quadruple densities 
{X Z} becomes {Xi Zi X Z} and ET is appropriately bordered. 

In (2.12) then from (4.4),(4.5) and (4.6) with its extension 

00 _ f cP X z X Z (u Z2 U z) 
Wz - Zz -I.. ( ) 

'l'XZ UZ 
() 

00 

= f z2lzlxxz(z2l u U z)dz2 

o 
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with a similar expansion of WI. 

4.2 Density of First Passage Time 
In general if Z,..., N{JL,a2) or alz{z) = 4>{(z - JL)/a) then 

rJO zlz(z)dz = JL{I- <I>{-JL/a)) +a4>(JL/a) In (4.8) 

where <I> refers to the unit Normal distribution. In our case Iz(z) is the conditional 
density Izlxxz{zdviUZ) from (4.7) with the variance 

in the notation of (3.1O) and the mean value 

14 ~ 10 r: r:1I ditto r1 [~l 
In these equations VI = V (t' < t), V2 = u, (t < t' < T) and 

ri = {r{t') r{t - t') r{T - t'n 

(4.9) 

(4.1O) 

for t' corresponding to WI or W2. Substitution into (2.11) and (2.12) then 
produces the overall first passage density 

t 

X exp{ - f 4>X(tdIX Z (v - JL X(t.)lu z)[JLI (1 - <1>( - JLI)) + al4>( - JLI) ltt dti 
al al 

o 
T -f 4> X(t2)iX z( u - JL X(t2)lu z)[JL2(1 - <1>( - JL2)) + a24>( - JL2 )It dt2 }dZ. a2 a2 2 

t 

(4.11) 

where JLzlu = EzuE~lu, with variances J- I from (3.4), 
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and the variances are 

1 -- [r~ r~] [ ditto r 1 [~~] 
In (4.11) the conditional densities may also be written in the fractional forms 

such as tPzlx = tPzx/tPx as in part of (4.7). Because the elements of all the 
covariance matrices are arbitrary functions of time through r (t) further integration 
of (4.11) is generally impossible. However the exact theoretical form of (4.11) is 
somewhat simpler, at least in appearance. For this the Rice type [16] of inclusion
exclusion series is used instead of the approximate exclusion factor exp .... This will 
now be derived from the discrete-time cases; necessarily for WI and W2 together. 
Suppose the time interval 2- n corresponds to K = 2rtT - 2 variates altogether 
and k up to the time t. Then two non-crossings are 

K K M n (U -wjTrt) = U + U n(-I)M(Wj2-n ), ( 4.12) 
j=1 M=lj=1 

using wj2- n to represent an upwards crossing of the j-th interval. Consider the 
event of m out of M crossings occurring before t. Each M-th order union of mu
tually exclusive events contains KM ordered terms, of which KM - K!/M! are 
repetitions captured by unions of lower order. From the hypergeometric distri
bution the number of these terms which contribute for the partition (m, M - m) 
IS 

as K ~ 00 while k/ K = tiT + 0(1/ K). This corresponds to (~) of the same 
unions of mutually exclusive events. The corresponding probabilities converge to 

(~) futdt1'" futdtm lTdtm+2· .. 1TdtM w(tm t tM-m T Zl\fIX(O) = u, Zo 2': 0) 

where the defining crossings at t, T and conditions at the origin have now been 
included. 

As one may also discover by direct expansion on the left of (4.12) such terms 
belong to the complete series 

W(~tT)) + f= (- tdti-1T dtj)M w(tmt tM-mTzMIX(O) = u,Zo 2': 0) (4.13) 
W Ozo M=1 10 t 

where tm = {tl ... ti ... tm}, ZM = {ZI ... ZM} and tM-m = {tm+2 ... tj ... tM}' 
This corresponds to the approximate expression (4.11) apart from averaging 

over positive slopes (zo and ZM here) and the convolution. When this is done it 
is obvious that individual terms contain orthant Normal probabilities of all orders 
from densities conditioned at the times {Otm ttM-m T}. It should be noted that 
truncation of this series corresponds to neglecting the excl usion of more than M - 2 
int,ermediate multiple crossings which is serious when T = O(M - 2)JLT or more. 
Th us for large T's the asymptotic formula (4.14) below could be more acc urate. 
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4.3 Asymptotic Density and Narrow-Band Noise 
If T is sufficiently large then t is also almost certainly large and (4.11) sim

plifies remarkably. For a slightly closer approximation we will introduce a time R 
over which the correlation is almost perfect so that no occurrence is possible for 
T < 2R. If this is done then (4.11) becomes 

T-R t T-R 

I1(T),.., f 2~ tfJ(u)tfJ(v) exp( -{f;{f tfJ(v)dt' + f tfJ(u)dt'} )dt 
R R t 

= r>: tfJ(u)tfJ(v) (exp _ r>:(T _ 2R)tfJ(u) - exp - r>:(T - 2R)tfJ(v») V 2; tfJ(v) - tfJ(u) V 2; V 2; 
(4.14) 

This is actually an approximate density for the whole range T > 2R with a 
first moment (l/tfJ(u) + 1jtP(v) + 2R). It should be noted that oX and R are not 
independent and that, if the concept is valid, 2R = Ro(oX, u, v) + Rt(oX, u, v), say. 

Suppose that the non-zero spectrum is uniform but confined to the frequency 
bands ±O ± Do. Then 

r(t) = cosDotsinOt/Ot (4.15) 

If Do/O is small enough then in (4.11) and (4.13) the rapid fluctuations of (4.15) 
are damped by integration over time. In addition if t > 271"/(0 ± Do) then (4.15) is 
small and all the components of (4.11) and (4.13) approach their asymptotic form 
with R = 0(211"/0). In effect the dithering at rate 0 makes (4.14) applicable for 
much shorter time intervals. 

The clumping of outcrossings with narrow band noise discussed by some au
thors corresponds here to first passages T ~ 211"/0 so that one must then expect 
11(211"/0) to be large. This is outside the range of (4.14). 

5. ONE DEGREE OF FREEDOM SYSTEM 
We finally consider exceedances from a process which is the response of a 

simple linear system to white noise [8]. The extension to several degrees of freedom 
[8,9] is similar and not difficult in concept but the details become messy without 
producing further insight. Let X(t) be the stationary solution of 

x + 2)"X + ,,2 X = dW(t) 

The Fourier transform of this presents us with the transfer function 

and when this acts upon white noise the resultant spectrum 

H H* = [(,,2 - 82) + 4)2,,282rl 

(5.1) 

(5.2) 

(5.3) 
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(S/V)2 = 1 - 2~2 ± 2i~~ 
= (a ± i{l)2 say. 

At each pole lsi = v so that a2 + {J2 = 1 and we define the phase difference 
cp = arctan (J/a. The inverse of (5.3) reduces to the covariance 

exp( -(Jvt) 
R(t) = 4a{Jv4 cos (alit - cpl. 

The magnification factor can be cancelled by suitably scaling the white noise input 
leading to 

r(t) = a-I exp(-{Jvt) cos(avt - cpl. 

If we define 7 = a + i{J then this has the complex form 

The derivatives are 
r(t) = -(v/a)e-Pvt sin avt 

and 

(5.4) 

(5.4A) 

(5.5) 

(5.5A) 

(5.6) 

(5.6A) 

The derivations here take advantage of the facts that sin cp = {J and cos cp = a. 
It will also be noted that A = {Jv2/a = v 2 tan cpo For linear systems of higher 
order in canonical form the autocorrelation matrices are summations of terms like 
(5.40,(5.5) and (5.6). 

5.1 Correlation Structure and Computation 
The density (4.11) may be used for any stationary Gaussian probabilities 

and the correlations above can be substituted, preferably by a computer program. 
The computation requires inversions like those in (4.6),(4.7) or (4.9) but some 
insight into their structure can be gained for systems like (5.1) and possibly for 
linear dynamic systems. Since we are interested now in several times for a sta
tionary process it is useful to emphasise time differences by the notational change 
{O t T} --. {To TI T2}. The 3 x 3 submatrices Eu and Ez are similar and easily 
inverted. Thus from (5.4A) 

a-I det[e-fJvITj-Til cos(alllTj - Til- 4»]E;;1 

= ~e-PVITj-T;I {cos(avITj - Til) + cOS(avTij - 24»} 

- acos(alllTj - Til- 4» (5.7) 
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where Tij = 2TA: - Ti - Tj if i, j and k are all different or Tii = 21Tj -- Tk I. Similarly 
for the slope covariances (5.6A) leads to 

(v2ja) det[e-/1vITj-Ti l cos(avlTj - Til + 4»]E;l 

= ie-/1V1Tj-T;I {cos(avITj - Til) + cOS(avTij + 24»} 

- acos(avlTj -1i1 + 4». (5.8) 

The complex forms of these are not shown here but with (5.5A) they lead to the 
conditional slope density 4>zlx(zlu). After 4>x(u)j4>(u) the essential computation 
in (4.11) is 

E(ZOZlZ2·(Exclusion /actorslZi > 0, u). (5.9) 

From mixed derivatives of a generating function E(exp(stz)lzi > 0) it can be 
shown that E(ZOZlZ2)lzi > 0) involves several Normal orthant probabilities up to 
the trivariate case as well as the corresponding densities. Therefore it cannot be 
expected that (5.10), the inner integral of (4.11), would be any simpler. If one 
presumes upon a family relationship to gamma densities then the the asymptotic 
form (4.14) might be improved by collocation at one time. 

6. DISCUSSION 
From the preceding arguments it can be seen that formulae similar to (4.11) or 

(4.13) describe the density of range-pair passage times for any sort of load input; 
the differences arise from the different probability models used for evaluation. 
Corresponding formulae for other types of range-pair or for other definitions of 
the same type can also be written by analogy(see [13]).Prima facie it seems that 
each definition[6], even of the same type of count, will lead to a different density 
function. 

For long times the asymptotic form (4.14) is suggested. This tends toward 
the standard Poisson model in virtue of reduced correlations. Narrow band noise 
extends the range of this simple asymptotic density. 

The results of Rychlik and Lindren[3,4,5] should relate to those here as 

a2/t(Tluv) 
/uv(u,v) = ETIX(O)X(T)( auav ) 

where the range is U - V and only upwards counts are considered, over long 
histories. 

As mentioned in Section 2.5, all the results except (4.14) hold for variable 
t.hresholds but the notational burden has been refused. However this may have 
applications in earthquake engineering and similarly modulated cases. 

The waiting-time or exclusion factors used here are actually approximations 
since the densities used are conditioned only on X(t) and X(t) at the crossing 
times instead of the intermediate history. This has been discussed by J.R. Rice 
and Beer[13] for their problem and S.O. Rice[16] has previously treated another 
similar case. From the experimental comparisons by Rice and Beer the effect of 
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the approximation is expected to be small. The frequency of extremes has been 
discussed in the earlier work of Sjostrom[17] and originally by S.O. Rice[16]. 

The response to linear systems can be represented as a linear summation of 
terms such as (5.4) to (5.6) and the various submatrices of the covariance are very 
similar. Sherman has counted range-pairs from simulated data[18]. This includes 
results from single degree of freedom systems and it is planned to compare the 
means of the present densities with these. 
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ABSTRACT 

A SAMPLING DISTRIBUTION FOR SYSTEM RELIABILITY ASSESSMENT 

Gongkang Fu & Fred Moses 
Department of Civil Engineering 
Case Western Reserve University 

Cleveland, Ohio 44106, USA 

This paper introduces a sampling distribution (WGNSD) for Importance Sampling 

method. which can be used in structural system reliability assessment. Four 

numerical examples of various cases presented verify success of the approach. It is 

clarified that independent sampling distribution produces poor estimates for 

correlated structural system. 

INTRODUCTION 

A structural system consists of a number of random variables X such as loads and 

component resistances. Its system reliability analysis can be formuiated by 

considering M significant failure modes 

(m·I.2 ••••• M) (1) 

and the probability measure of system failure' occurrence 

Pf ( ). Probl any g (X)<O 1 sys m--. f G(~) f(~) d~ 
(m·I.2 ••••• M) 

(2) 

x 

where f(~) is the joint probability density distribution of !. G(~) is an indicator 

function 

(m=I,2 •••• ,M) (3) 

In general it is extremely difficult to find the joint probability density 

distribution of gm's. which is necessary to carry out the probability integration in 

(2). The multifold integration involved would be terribly time-consuming even if the 

joint distribution would be available since the failure region G(~)-l would be 

intractable. 

simulation. 

Two alternatives available are bounding techniques and Monte Carlo 
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The research on bound searching has shown that as a narrower bound is desired, 

more information on mode occurrence unions must be accessible. Examples are 

comparisons among bounds of first order [Cornell 1967], second order [Ditlevsen 1979] 

and third order [Ramachandran 1985]. It by no means excludes the possibility of 

exhaust ively taking advantage of the required information without "wasting", for 

instance, a proper "ordering" of failure modes. Unfortunately, the joint 

distributions of failure event pairs or trios are not always available, and sometimes 

not even their correlation coefficients. 

Monte Carlo simulation is another alternative to estimate system failure 

probability. Developments of high speed digital computers have made this method much 

more attractive than ever. However, it is still far from perfect despite advantages 

of simplicity and automatic inclusion of correlations. The major concern is its 

efficiency. This paper is to focus on improvement of its accuracy and efficiency by 

using Importance Sampling. A sampling distribution (WGNSD) is introduced for general 

system reliability assessments. 

2 IMPORTANCE SAMPLING METHOD 

Importance Sampling is a variance reduction technique well known in statistical 

simulation. Recently its application to structural reliability attracted researchers 

in this area [Harbitz 1983, Melchers 1984]. Its basic idea is to completely disturb 

the original distribution function f(~) and sample from another distribution function 

which gives much more realizations of system failure, and then "correct" the result 

by a proper weighting. Eq.(2) is then rewritten as follows 

P f(sys) = f 
~ 

f(~) 

[G(~)--] p(~) dx 

p(~) 

(4) 

where p(~) is the sampling distribition function to generate random samples ~ from. 
o, 

The Importance Sampling estimator Pf(sys) of Pf(sys) is to be obtained by the 

following scheme 

o, 

Pf(sys) (5) 

where ~ are samples from p(~) instead of f(~) and N is sample size. This gives an 

unbiased estimator of Pf(sys): 
o, 

E[Pf(sys)] = Pf(sys) (6) 

Its variance turns out to be 

N 

G(_x) f(x) 2 
- 2 

E[ ] - Pf(sys) 
p(~) 

(7) 
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Eq.(7) gives the most attractive feature of Importance Sampling. as the term in 

the parenthesis can vanish without any requirement on N. It states that the variance 

can. in theory. be reduced to zero without increase of sample size N. Obviously. the 

variance reduction depends on the choice of the sampling distribution p(~). It is 

noticed that p(~) has to be chosen such that more important contributions to Pf(sys) 

can be included. 

3 WEIGHTED GENERAL NORMAL SAMPLING DISTRIBUTION (WGNSD) 

Importance Sampling is very promising but care must be exercised to determine the 

sampling distribution p(~). The theory does promise the possibility of zero 

variance. but not guarantee it at all. As a matter of fact. a careless choice of the 

sampling distribution may lead to a variance increase instead of reduction! 

Unfortunately. this has never been mentioned by structural reliability researchers 

interested in Importance Sampling. The examples in this paper will impress. 

hopefully. the reader how an improper sampling distribution may lead to poor 

estimates. 

An ideal choice of sampling distribution for Importance Sampling is to yield zero 

variance of the estimator ~f(SYs) [Kahn 19561: 

G(~) f(~) 

p(~) =---- (8) 

Pf(sys) 

One can verify it by simply substituting (8) into (7). It is. however. disappointing 

to notice that the optimal sampling distribution dependes on the exact solution 

P f( sys) to be estimated. Nevertheless. eq. (8) offers important information for an 

ideal optimal sampling distribution (see Fig.1 for an example of 2-dimensional 

problem): a) Indicator function G(~) serves to truncate the original distribution 

f(~) and to require all samples be from the "tail" part of f(~) as well as in the 

failure region G(~)=1. b) The optimal sampling distribution is proportional to the 

"tail" part of the original one. c) The truncated original distribution is factored 

by 1/Pf (sys) to be qualified as a probability distribution function. 

Considering these important features and taking advantage of reliability 

information of individual modes: reliability indices a m and corresponding design 

points ~ (m=1.2 ••••• M). a general sampling distribution is introduced in eq.(9). It 

is named as Weighted General Normal Sampling Distribution (WGNSD). 

M 

L 
m~1 

w 
m p (x) 

m- (9) 

where Pm(~) is jOint normal distribution of the basic random variable vector X with 

the same covariance matrix as f(~) and design point ~ of the m-th mode as its mean 
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vector; wm is a weight for Pm (!.). 

proportional conditions 

The weights are required to satisfy the 

p(~) 

- ----- = -------------- (m=2,3, ••• ,M) (10) 

f(~) p(~) 

and the qualification condition 

ft·-
1 w > 0 m- (m=l ,2, ••• ,M) (11 ) 

One may take advantage of WGNSD as follows: 

1) Easy understanding and controlling in samplings by normal distributions Pm(!.)' 

This chioce is also based on the fact that the type of sampling distribution does not 

make much difference as long as the important information around design points x* are 
-m 

included. 

2) Closeness to the "tail" part of the original distribution f\20. The 

proportional conditions (10) are to make the peak value ratios of WGNSD match the 

original ones of f(!.) by adjusting weights wm' These peak values occur at the design 

points, based on which reliability indices of modes am are measured. The employment 

of the same covariance as f(!.) is to avoid large deviation of the sampling 

distribution p(!.) from the original one f(!.), especially when some of basic random 

variables are, or close to, fully correlated. 

3) Use of important information obtained in mode reliability analysis. WGNSD 

consists of M sub-distributions Pm(!.) which are centered at the corresponding design 

points x* of mode m. These points can be obtained by quite successful approximation 
-m 

methods such as first order second moment or maximizations of the original 

distribution f(!.) subject to the corresponing failure mode equations. The latter 

reveal importance of these points as maxima, from whose neighbourhoods most of 

contributions to P f(sys) and approximately 50% of samples realizing failure are 

expected if the failure surfaces are not nonlinear of high order. 

4) Feasibility of separate sampling and weighted sample sizes for individusl 

modes. Substituting (9) into (4), one has the sampling scheme of WGNSD: 

M N 

L w Lm G(~ ) f(~ 'I. m 
Pf(sys) m 

m:I Nm km"'l 
(12) 

Wj Pj (!.k ) 
=1 m 
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in which sampling of WGNSO is grouped corresponding to failure modes. N is the size 
m 

for the m-th mode sampling, ~ is the k-th realization of the basic random variable 

vector from the m-th general normal distribution Pm (I:!:);.. Contributions of individual 

modes to Pf(sys) are not expected to be equal in general obviously. Another 

weighting on the sample sizes Nm is reasonable and economic in computation. The 

weighting is suggested to be proportional to the ratio of corresponding density 

distribution values: 

(m=1,2, ••• ,M) (13) 

The approximate equality is due to that Nm has to be an integer in practice. 

Eq.(11) must be satisfied for p(x) being a probability density distribution. It 

should be noticed that determination of weights wm subject to (10) and (11) may fall 

because of the closeness of design points. In this case, a single general normal 

sampling distribution should be used to "cover" these nearby design points or, 

equivalently, modes. 

WGNSO construction is inspired by Melchers' (1984) sampling distribution, which 

is a special case of WGNSO in (9): 

M 

L h (x) 
m-

(14) 

where wm has been set equal to 11M for every mode, hm(~) is similar to Pm(~) defined 

in eq.(9) except that its covariance matrix is diagonal. The covariance matrix keeps 

the Original diagonal terms of f(~)'s as Pm(~) in (9), and sets the off-diagonal 

terms zero. It obviously ignores the correlation information of the original joint 

distribution. It will be seen in examples later that this implies significant loss 

of important information about Pf(sys) to be estimated. 

In summary for this section, the WGNSO° is constructed to possess some of the 

important features of the optimum. Numerical examples in the next section will show 

that WGNSD works quite successfully for various types of problems in structural 

system reliability analysis. 

Eq.(8) also inspires an iteration strategy of estimation. However, the authors' 

experience showed that this idea failed here due to 1) estimated approximation .of the 

criteriQn and search direction for iteration and 2) lack of start point. The 
'\. 

variance of estimator P f( sys) can be used as a search obj ective and criterion for 

iteration termination, however, it has to be estimated and its doubtful accuracy 

affects directly the determination of new sampling distribution for the next 

iteration. The extremely small value of failure probability to be estimated 

increases the degree of difficulty in the particular problem. WGNSD can be used as 

the first trial of optimal sampling distribution search, as far as the start point is 
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concerned, but the following examples will display accurate enough results of WGNSD 

to make further iterative searches unnecessary. 

4 NUMERICAL EXAMPLES BY WGNSD 

Examples in this section are to show how WGNSD works in estimation of structural 

system reliability for different cases such as unequal B m 's of modes, correlated 

failure modes, correlated basic random variables and discontinuous failure mode 

equations due to brittle behavior of material. The same sampling distribution has 

been employed for system reliability assessments of bridge structures [Fu & Moses 

1987, 1986]. 

* Example 1: Independent Modes with Unequal Bm's 

Consider a system with two failure modes: 

g2 = 42 - R - S 

where Rand S are resistance and load effect random variables, respect ively. 

(15) 

They 

are assumed to be independent of each other and normally distributed: R'\, N( 20, 2) and 

S '\, N( 9,2.7). The two modes concerned are mutually independent. This kind of problem 

may be encountered in practice when the resistance may act as a load from another 

view. An example can be the gravity of a structure, being a resistance to 

overturning moment of horizontal loads as well as a load to the foundation. 
'\, 

P f (sys) vs. number of samples used is plotted in Fig. 2, and details of the 

The individual modes. The weighted sample sizes suggested in (13) is employed. 

values in the parentheses near the marked estimates of Fig.Z are relative errors of 

the estimates. Using only 1,000 samples, for example, WGNSD has given quite 

satisfactory result with relative error of 12.5%. 

Fig.3 is a comparison of weighted and non-weighted sample sizes in application of 

WGNSD for the same problem. A range of total sample size practically affordable from 

1,000 to Z,OOO is plotted in Fig.3. About 1 second of CPU time is used to obtain 

each estimate on the VAX 780 computer system. Most of cases of Fig. 3 show that 

weighted sample sizes give better estimates than non-weighted ones, i.e. more 

accurate values are obtained by using the same total number of samples, while the 

cost for the weighting in sample sizes is almost zero. 

* Example 2: Correlated Modes with Unequal Bm's 

In this example, mode Z of Example 1 is replaced by 

gz = 20 - S (16) 

so that gl and gz are now correlated. Basic random variable Rand S are the same as 

in Example 1. A comparison of the sampling scheme WGNSD with Melchers (14) is made 

in Fig. 4 over a range of total sample size Nt' 

obviously. 

The former shows better accuracy, 
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* Example 3: Multiple Correlated Variables and Modes 

Consider a structure system of M components in series. The components are 

assumed equally correlated with a common correlation coefficient p. They are 

identical and normally distributed random variables under a deterministic load S 

(Fig.5). R and a are their common mean and standard deviation, respectively. Every 

component is designed equally reliable. This system has M similar failure modes: 

g = R - S m m (m~l ,2, ••• ,M) (17) 

These failure modes are correlated whenever the components are correlated. The 

design point Rm is found 

R* = ( * * 
-m Rm,l' Rm,2' ... , (18a) 

r: + &(1-,) 
i~m 

(im 1,2, ••• ,M) (18b) 

i=m 

by maximizing the original joint distribution of R 

1 1 

[~ ':"4" -1{ -4 T) ________ Exp r-R1 L.. r-RI 

(211)M/2 l[p11/2 aM 2a2 - P-

(19) 

in which T denotes transpose of a vector hereafter, l~pl and ~p-1 are determinant 

and inverse of correlation coefficient matrix: 

(20) 

P 

(M-2)p+! 

(M-2)p+1 

(21) 

(1- pH(M-1)p+1) 

p 

(M-2)p +1 

The WGNSD is constructed based on the design points of (18), 

(22a) 

1 1 

Pm(!.) = (211)M721~11J2 aM Exp[ -2c;2{!.-~L:;1{!._(} T) 
(22b) 

The weights have been set equal to 11M as the ratios of the peak values are equal and 
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unity. as all modes are obviously equall-y il.mpllrtant to P f(sys)' 

This problem has been solved by Grigoriuand Turkstra (1979) using numerical 

integration. Their results are considered as exact and plotted in solid curves in 

Fig.5 for M=2.4.6.8.10. Discrete points marked are from WGNSD with weighted sample 

sizes for comparisons. Total sample size of 1.000 is used. 

It is observed that .t>he \WGNSD cBuggested give ,estimates of good agrrement with the 

exact values, and est1.mate points deviate more from the exact values when M 

increases. This is due to that less samples for indiv1.dual modes are used with a 

constant total sample size (1.000) for larger M. Overall speaking. for total 108 

estimates of Ma 2.3 ••••• 9_.10 and =0 •• 1 •• 2 •••••• 9 •• 95.1 only 5 of them have relative 

errors over 10% and the maximum one is 11'6.15% by using 1.000 samples. For the most 

costly case M='1O. the 1.000 evaluations take about 4 seconds £P.Ntime of the VAX 780 

computer. It is quite satisfactory from a practical view. 

* Example 4: Correlated and Discontinuous Failure modes 

A two bar parallel structural system is considered (Fig.6). The components Rl 

and R2 are assumed to be of brittle failure and jointly normally distributed with a 

correlation coefficient P. They are designed to have commo.n-coefficient of variance 

20% and mean value proportional to a deterministic load S by design factor 2.2: 

Rl a R2 a 2.2*(S/2) = 1.1*S (23) 

The discontinuous failure mode equations gl and g2 are shown in Fig.6. The design 

* point !1 corresponding to mode 1 

!7 = ( R7. R; ) T (24a) 

is formed by 

* Rl = S/2 

{
SO.1-0.6 

R a 

2 S 

1/6~p ~1 

O~p ~ll6 

* !2 for mode 2 can be found readily by symmetry of the two modes. 

(24b) 

The WGNSD is 

constructed as (22) except setting M=2 and R* (m=1,2) as ,d-e'fined by (24). Estimated 
-In 

Pf(sys) vs. correlation coefficient by using 2.000 samples are plotted in Fig.6. The 

exact solution of solid curve is obtained by using the table of bivariate normal 

distribution integration [National Bureau of Standards 1959). The circled estimates 

are from WGNSD estimation. and the triangled ones from Melchers scheme (14). which 

disregards the correlation between Rl and R2 in sampling. It is not surprising that 

the latter yields large deviations from the exact solutions when two components are 

close to fully correlated. owing to extreme large deviation of the sampling 

distribution (14) from the original one (19) when p is closed to 1. This observation 

disqualifies (14) as a successful sampling distribution for cases of highly 

correlated variables. 
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5 SUMMARY AND ACKNOWLEDGEMENTS 

A new sampling distribution (WGNSD) for application of Importance Sampling in 

structural system reliability assessment is developed. It improves Monte Carlo 

simulation both in efficiency and accuracy. It has been clarified that independent 

sampling distributions are not proper for correlated structural systems. Numerical 

examples show success of the introduced method in various cases. The support for 

this research from the National Science Foundation of U.S.A. is appreciated. 
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Fig.3 WGNSD Estimates 

with Weighted and Non-weighted Sample Sizes (Example 1) 



www.manaraa.com

7 

6 

5 

4 

153 

. 1 2 

I. I - 5 2u - 5 

fl. ).21 4.01 

~: 0 •• 1 ;1 •• 1) <ZO.O .20.0) 

" .- .BOh10") .un.w-· 

t- " - ;:2!J;=. ~ -G--- ".== . .::::-~.-... -.-{. 

i'Y" • . ~ ~ :~ 

0 Melchers' SD 

C::. WGNSD (N) =N2=~Nt) 

,0 "WGNSD (N2;:·05285N}) 

- Exact 

1000 1200 1400 1600 1800 

Fig.4 Estimates by \~GNSD and Melchers' SD 

(Example 2) 



www.manaraa.com

154 

H-IO (0) 

.012 - 1r .... ... 

.010 .. 

J ~I 
.OOR· [;] H-6 

I [;] 

.006 H=4 (0) 

.004 

H=2 (6) 

.002 

.000 p 

.0 .2 .4 .6 .8 1. 

Fig.5 Comparisons of WGNSD Estimates and Exact Values (Example 3) 



www.manaraa.com

- 2 
Pf(Sys)xIO 

I. 

155 

o WGNSn 

'-0-- Helchers' Dist . 

• 8 lxact 

.6 

.4 
" 

'y" 
""'I",.;';!-;.~~-, 

,." , \ 

I ' " ,/ V , /1 
, I 

.2 ' I .,' .-:;._ ..... 
• : .... In •.• :I· • . , 

.0 

.0 .2 .4 .6 .8 

Fig.6 Estimates by '~GNSD and Melchers' SD (Example 

p 

1. 

4) 



www.manaraa.com
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Arcisstr. 21, 1).8000 Miinchen 2 

1. Introduction 

The numerical determination of the multinormal integral is required 

in many problems of statistics and, recently, turned out to be a key 

problem in structural and operational system reliability [1,2]. For 

example, the analysis of multi-component systems with multiple failure 

modes (series or weakest-link systems) requires the evaluation of 

the probability of a union of failure events. If equivalent hyper

planes [3] in the so-called standard normal space [4] which represent 

the modal and/or componental failure sets of the system can be produc

ed, e.g. by FORM/SORM methods, the union probability can be computed 

as a multinormal integral. As another example the quantification of 

the redundancy in a system in a probabilistic sense requires the 

evaluation of intersection probabilities [5,6]. Again, this problem 

can be reduced to the computation of a multinormal integral if the 

boundaries of the failure sets can be linearised appropriately. Even 

if asymptotic second-order approximations of the failure surfaces are 

used, the evaluation of multinormal integrals is part of the solution 

to general intersection probabilities [2,7]. 

Unfortunately, no general analytical solution exists for this 

integral in higher dimensions. There exist some reduction formulae and 

series expansions but their numerical effort increases exponentially 

with the dimension of the integral and the numerical accuracy is only 

moderate as discussed in [8] and [9]. The same holds for direct 

numerical integration [10,11] or crude Monte Carlo simulation methods. 

Numerically feasible approximations 

recently, been proposed in [1,9,12] 

classical FORM/SORM techniques [1,2], 

concept [9,12] and on concepts of 

forward in [2,7,14]. Two importance 

for the general case have, 

and [13]; They are based on 

on the equivalent hyperplane 

asympotic analysis [13] as put 

sampling schemes for the 
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evaluation of the multinormal integral are also available one of which 

is applied here to the evaluation of the multinormal integral for the 

first time [15,16,171. 

In this paper a review of the more recent methods is presented 

supplementing the discussions given in [81 and [91. Primary emphasis 

is given to the validation of the quality of the various approx

imations, their numerical effort and the identification of their 

appropriate area of application. 

2. Review of some recent approximation methods 

2.1 Formulation and classification of the computational tasks 

n Let Q = (c 1 ' ... ,cn ) e ~ and let X = (XI, •.. ,Xn ) be a standard 

normal random vector with correlation matrix E, i.e. with E[Xil = 0, 

E[X~I = 1 and E[XiXjl = Pij (1 S i,j S n). The n-dimensional normal 

distribution is defined as: 

n 
= p[ n (X. SCi) I 

i=l 1 
( 1) 

For the considerations in the sequel it is of advantage to make a 

distinction between two cases. The first case is the case of a "small 

intersection", i.e. there is at least for one i, c i < 0, in eq. (1) 

or, equivalently, Q • D with 

n 
D = n (D) = 

i=l 

n 
{ n (X. - c. ~ 0» 
i=I 1 1 

(2a) 

and 2 the coordinate origin. "Large intersections", i.e. all c i ~ 0 or 

2 e (D), represent the second case, where none of the individual 

events contain the origin. Then, one can write: 

(2b) 

2.2 Approximations based on the equivalent plane concept 

The basic ideas to use the equivalent plane concept are as follows 
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[9,121. The vector ~ can be represented in terms of an independent 

standard normal vector ~ by 

i 
X. = Z a. U. 1 j=1 

1j J 
( 1 i n) (3 ) 

with all = 1 and the other coefficients determined such that the left

hand and the right-hand side of eq. (3) have the same correlation 

matrices [11. The multinormal integral can then be rewritten as 

n 
P[~ ~ £.1 = P[X 1 S c 1 I P[ n (X. ~ c i IX I ~ c i I 

i=2 1 

n i 
= ~(CI) P[ n {a. 1 Xl + z a .. u. - c. S O} 1 

i=2 1 j=2 1J J 1 

n 
= .(c1 ) P[ n {g. (U) ~ O} ) (4 ) 

i=2 1-

where the variable Xl is again standard normal but truncated at c i and 

independent of the other U's. Xl can be represented by its Rosenblatt

transformation [9,121: 

(5 ) 

Hence, the g-functions in eq. (4) are: 

-1 i 
gi(~) = ail· [.(c I ) .(U I ») + % 

j=2 

= ail .-I[.(C I ) .(UI)I + (1 (6 ) 

For later convenience, the second term of eq. (6) is replaced by an 

equivalent term in one standard normal variable Y. Linearisation of 

eqs. (6) at their respective ~-points yields another intersection 

domain which can easily be put into the form eq. (4). Repeated ap

plication of this procedure yields a crude first-order estimate of the 

multinormal integral [II. It will be denoted by estimate "AD" in the 

following. It is not further discussed because significant and· 

straigthforward improvements can be achieved by applying the above

mentioned equivalent plane concept. 
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For this purpose, denote the conditional failure events in eq. (6) 

as: 

(2 SiS n) (7 ) 

Replacing Di by a "similar" event Bi such as the "equivalent half

space" proposed in 131 leads to: 

with 

b = (2 + 2 )-1/2 
ij ail a i2 a ij 

{ Xl for j __ = 21 

Yi for j 

(8 ) 

EI.I.l is the conditional expectation which has the same probability 

as Di and the same relative sensitivity with respect to small varia

tions in the variables Xl and Vi' One obtains the approximation 

n n 

PI n Dil - PI n Bi l = .n-l(~;!) 
i=2 i=2 

(9) 

with 

and 

(2 ~ i,j ~ n) 

and, finally: 
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Recursive application of the last equation again 

product of univariate normal probabilities. Both 

eq. (8) can be computed by FORM/SORM methods. 

expresses "'n 

the e. and the 
l. 

In this case a. 
-l. 

(10) 

as a 

a .. of 
l.J 

is the 

gradient at the p-point of gi(~) = 0 and e i = - Pi' The ~i and the e i 
may be improved further at the expense of some more numerical effort 

involving one dimensional integrations (for details see (12). In 

particular, the e i can be obtained from binormal probabilities. In the 

sequel these approximations to "'n are referred to as "AI" (FORM/SORM) 

and "A2" (including improvements by numerical 'integrations). 

2.3 Approximation based on asymptotic analysis 

This approximation is studied in some detail in (13) following ideas 

put forward in (7). The general formula for an asymptotic approx

imation for the probability content of an intersection is (2): 

m 
p[ n D.) - "'k (g;~) (det(~ - ~»-1/2 = "'k (g;~) C 

i=1 l. 
(11 ) 

Herein, T * the k-dimensional standard normal integral, ~ = ~ y , 

~ = ~T~, C = (det (~ - ~»-1/2 a second-order correction term with ~ 
the identity matrix and y the Hessian matrix collecting the second-

order derivatives of the domain boundaries. ~* is a point defined by: 

~* = min ("~") for (~ 
m 
n gJ'(~) S O} 

j=1 
( 12) 

k (1 S k S m) is the size of the index set J for "active" constraints, 

i.e. for which gj(~*) = o. t collects as columns the linearly in

dependent, normalized gradients ("a." = "grad g.(u*," = 1) of the -J J -
active constraints. As seen eq. (11) involves a multinormal integral. 

Taking D in eq. (11) as in eq. (2a) suggests to apply formula (11) to 

itself. 

The procedure for the evaluation of "'n starts as above (see eqs. (3) 

to (6». Next, an approximation for the second factor in eq. (4) is 

according to eq. (11) 
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n 
P( n {g. (U) 

i=2 1-

where. J 2 = {2 •...• n} is the subset of k S n - 1 active constraints at 

~* and C2 the second-order correction factor as in eq. (11). There

fore. eq. (4) can be rewritten as 

( 13) 

which shows the main difference as compared to method "A" apart from 

the fact that now the joint p-point is used as an approximation point. 

For the last factor one. in turn. proceeds as described in eq. (4) 

with new Xi in eq. (3) given by Xi 

correlations p . . = a'! a. and the new IJ -1-J 
ed at most (n-1)-fold application of 

T = ~i ~ being standard normal with 

c. defined by c. = a'! ~*. Repeat-
1 1 -1 

this scheme finally yields the 

result. Further technical details can be found in [13]. 

In the sequel this approximation is referred to as "B". It should be 

noted that for large intersections this method coincides with method 

"AI" if SORM-approximations to the ei's are used. 

2.4 Directional importance sampling for large intersections 

An approximation to ~n by directional simulation which is restricted 

to the case of large intersections has been proposed by Ditlevsen (15) 

who extended an idea of Deak [16]. The restriction is caused by the 

assumption of a convex safe set in that method. Eq. (2b) may be re

written as 

1 - P[O] = Pin] = J 
unit 
sphere 

(14 ) 

where A(.) is the uniform probability measure and d~ the area element 

on the unit sphere in the n-dimensional standard normal space. K2 [.] 
n 

is the Chi-sqare distribution function of n degrees of freedom. r(~) 

is the distance from the origin to the boundary of D in the direction 

of the unit vector ~. The integral in eq. (14) can be estimated from 
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2 2 
{1 - ~n [r (s.l I) (15 ) 

which essentially is the proposal in [161. Alternatively, it can be 

expressed as 

2 2 

[ 
1-~ (r (~» ] P[DI = E ____ n ______ _ 

f(a) 

N 

.. A L 
1=1 

2 2 
l-~n(r(~l» 

f(~l) 
( 16) 

where f(a) is a suitable sampling density function [151. Using eq. (3) 

the boundary of Dis: 

(jD = c.) = 
1 

u (g.(U) = O} 
(i) -1 -

(1 SiS n) 

For eqs. (2) and (14) the following inequality holds: 

n 

P[DI S L Pi 
i=l 

This suggests a mixed sampling density: 

= 
( f) Pi f i (~i ; ~i ) 

X P1' 
(i) 

The sampling density for the i-th part of 3D is (see [15]) 

2 2 
l-~n("i) 

l-.(c i ) 
= 

( 17) 

(18 ) 

(19 ) 

(20) 

with "i the distance of the i-th part of the boundary to the origin in 

the sample direction ~i' In case of the multinormal integral this 

distance is easily computed: 

"'i = 
C. 

1 

r(~) in eqs. (15) and (16) simply is: 



www.manaraa.com

r = min ( max (O'~i» 
( i) 

164 

The n sample directions ~i are obtained from 

y + 
~i (l:,., v) = 

lIy + 

(v.-a~ y)a. 
1 -1 - -1 

(21 ) 

( 1 k $ n) (22 ) 

where L is a sample of standard normal vector of dimension n obtained 

from pseudo-random numbers wk 

variable truncted at c i ' i.e. 

(wk ~ (O, 1» and V. 
1 

is a standard normal 

Finally, the right-hand side of eq. (16) can be written as: 

n N 1_1'{2 [ r(~i) ] 

P[Dl 2 P. { 1 2 n } '" FT 2 1 
l 1 -I'{ [~. (y 1 ' vI) 1 i=l 1=1 (i) n I-

n N 

= 2 ~(- c i ) { 1 2 1'1 } FT (23 ) 

i=l 1=1 

1'1 is set to 0 if rlLlv l ) is equal to O. This approximation is referr

ed to as method "CD in the sequel. 

2.5 An importance sampling scheme for small intersections 

It is not obvious though probably possible to derive an importance 

sampling scheme for small intersections on the lines of section 2.4. 

However, based on a proposal by Melchers [17], it is possible to 

derive another importance sampling scheme for small intersections 

which, In principle, could also be generalized to large intersections. 

The general formula is: 

F(U+U*) 
PIDI 

F(u) 
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N 

~ 2 (24) 

k=1 

I D(y) is an indicator function: 

for y IE 0 

for Y, E 0 

o is defined as in eq. (2a). The are sampled standard normal 

vectors. The sampling density is the n-dimensional standard normal 

density with mean Y,* which is the joint p-point for the small inter

section according to eq. (12) with the gi(~) defined in eq. (3). For 

the multinormal integral it is easy to obtain Y,* analytically in 

making use of eq. (3): 

* 
* * { 

u 1 = c 1 
Y, = (u i ) = i-I (25 ) 

* 2 * u. = c. - a .. u. ( 2 i n) 
~ ~ IJ J 

j=1 

Also, the indicator function 10(y,) is easily evaluated. In noting that 

.(- Pc) ~ PIOl a numerically more convenient expression of eq. (24) 

is: 

PID] 

and 

n 

'I't = exp I-i 2 
i=1 

N 

2 with 

l=1 

Just simple evaluations of the g-functions are needed to obtain 10 (y,). 

This approximation to .n is referred to as method "0". 

3. Examples 

3.1. The symmetrical case 

In all examples below the results are given in terms of the equi-
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valent safety index p = +-1 (P[O]). If in eq. (1) all Pij = P and 

(1 S i,j S n), +n has an exact solution [18] involving all c. = C 
1 

one-dimensional integration. It is used here as a reference. 

In table 1a the results of the various methods can be compared for 

o S p < I, n = 10 and c = -4, 0 and +2. For n = -4, only method "0" is 

appl inable. For c = 0 both simulation methods are inadequate. For the 

case n = +2, only method "C" is possible. The intervals in tables 1a 

and lb represent the 95% confidence intervals for method "C" or "D" 

with N = 1000 sample points. This equicorrelated nase with identical 

ni's is considered the most unfavourable for methods "AI", "A2" and 

"A". They, nevertheless, reproduce almost the exact results for the 

extremes P = [-I/(n-l)l +~, p = 0 and p = 1 - ~ with ~ a machine 

dependent small number. From table la the error with these methods is 

largest for medium values of p, p = 0.6, say. Therefore, in figure 1 

and in table 1b the dimension n is varied from 1 to 50 for p = 0.6 and 

c = -4, 0, 2 demonstrating the behaviour of these methods for larger 

n. Method "AI" produces relatively good results. Method "A2" sometimes 

is more ancurate but at the expense of about 10 times the computa

tional effort of met.hod "AI". "'lethod "A" clearly is superior to 

methods "A" in the "small" intersection case. That it gives better 

results than method "AI" also in the case of "large" intersections is 

due to a numerically more consistent computer program. Method "B" 

usually requires about the same computation time as method "AI". All 

in all, the methods "A" and "B" are suprisingly accurate over the full 

range of values of n, c and p. For not too large n, n < 20 say, the 

computation time of methods "A" and "B" are significantly smaller than 

for any simulation procedure. For very large n, n» 20, say, the 

importance sampling schemes become more attractive. But one has to 

bear in mind that method "CD can only be applied to "large" inter

sections whereas method "0" is efficient only for "small" inter

sentions. Furthermore, method "0" fails for correlation matrices 

approaching singularity (see also section 3.3). 

3.2. A degenerate case [9,12] 

Let U1 and U2" be two independent standard normal variables and A a 
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(J 

8 

6 

~~ ~ 
AO 

~1 
~ 

o 0-'= B 
fLexaet 

, 

I e=O I - AO 
;At, A2 2 

I Lexact 
B .--

o 
10 20 30 /'0 50 n 

le.2: AI.A2andB .. exact 

Figure 1: Accuracy of computation methods for equicorrelated 

variables (p = 0.6) for various arguments Q 

Table 1a 

c = -4 , n = 10 

p "AI" "A2" "B" "c" "0" exact 

0.0 14.15 14.15 14.15 - 13.00 - 00 14.15 
0.2 8.97 8.95 8.94 - 8.90 - 00 8.93 
0.4 7.14 7.10 7.08 - 6.91 - 7.40 7.05 
0.6 t>. 04 5.97 5.97 - 5.85 - 5.95 5.92 
0.8 5.19 5.10 5.10 - 5.04 - 5.10 5.06 
0.99 4.20 4.18 4.17 - 4.14 - 4.18 4.17 

c = 0 , n = 10 

P "A1" "A2" "B't "ell "D" exact 

0.0 3.10 3.10 3.10 - - 3.10 
0.2 2.18 2.10 2.08 - - 2.09 
0.4 1. 65 1. 57 1. 55 - - 1. 55 
0.6 1. 22 1. 16 1. 14 - - 1. 13 
0.8 0.80 0.76 0.74 - - 0.73 
0.99 0.17 0.16 0.15 - - 0.15 

c = +2 , n = 10 

P "Alit "A2 1' "B" "C If "0" exact 

0.0 -0.82 -0.82 -0.82 -0.73 - -0.83 - -0.82 
0.2 -0.90 -0.92 -0.90 -0.85 - -0.94 - -0.92 
0.4 -1.01 -1. 04 -1. 02 -1.01 - -1.13 - -1.05 
0.6 -1. 17 -1. 20 -1.19 -1.09 - -1. 22 - -1. 20 
(J.8 -1. 40 -1. 41 -1. 42 -1. 34 - -1.48 - -1.41 
0.99 -1. 86 -1. 85 ":1.86 -1.80 - -1. 95 - -1.85 
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Tab] e lb 

c = -4 , P = 0.6 

n "Al" "A2" "B" "e" "0" exact 

10 6.04 5.97 5.97 - 5.85 - 5.95 5.92 
20 6.55 6.42 6.41 - 6.25 - 6.34 6.28 
30 6.84 6.68 6.63 - 6.42 - 6.51 6.46 
40 7.05 6.87 6.79 - 6.52 - 6.63 6.58 
50 7.25 7.00 6.92 - 6.60 - 6.73 6.67 

c = 0 , P = 0.6 

n "AI" "A2" "B" "e" "D" exact 

10 1 • 22 1. 16 1. 14 - - 1. 13 
20 1. 54 1. 48 1. 42 - - 1. 40 
30 1. 73 1. 68 1. 59 - - 1. 55 
40 1. 86 1.82 1. 71 - - 1.65 
50 2.00 1. 90 1. 80 - - 1. 73 

c = +2 , P = 0.6 

n "Al" "A2" "B" "C" "0" exact 

10 -1. 17 -1. 20 -1.19 -1.15 - -1. 27 - -1.20 
20 -0.95 -0.97 -0.97 -0.91 - -1.04 - -0.98 
30 -0.83 -0.83 -0.85 -0.84 - -0.98 - -0.86 
40 -0.74 -0.73 -0.77 -0.68 - -0.82 - -0.78 
50 -0.67 -0.65 -0.71 -0.66 - -0.79 - -0.70 

real number. The Xi's are defined by 

(lsisn) 

It = It (i-I) 
i rn=rr 

yielding the correlation matrix: 

R = (p .. ) = cos ( I It . - It. I ) = IJ 1 J 

The probability P[D) = ~n(c,~) = p[n(X i S c») can be shown to be the 

probability content of a plane polygon in the space of (U 1 'U2 ) as 

demonstrated in figure 2. In the case It = n/2 (figure 2a) all 

correlations are non-negative and Pn = O. 
1 

For c > 0, the exact result is 
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P[D) = 4>n(Q.,~) = 4>(c) + (n-l) P(.<I) - 0.25 

.<I is the shaded triangle in figure 2a. Some results are given in 

table 2a for the case c = 2. For n ~ ~, one has 

From table 2a one concludes that methods "AI' and IIB'I are very 

accurate. Method "CD is less satisfying. 

For c ~ 0, only the variables Xl and Xn contribute (see figure 2a). 

The exact result is: 

Methods "A" and "B" reproduce the exact results for arbitrary n in 

this case. 

" <:) 

n=47=rr/2 
FIGURE 20 

n = /0 7 = 2rr (n-tJ/n 

FIGURE 2b 

Figure 2: Degenerate cases for numerical schemes ( from (9)) 

Figure 2b and table 2b deal with the case A = 2n(n-l)/n and c > 0, 

of course. The exact result is 
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Table 2a 

A = n/2, c = 2 

n "AI" "A2" "B" "c" ltD" exact 

3 -1.61 -1.62 -1.61 -1.56 - -'1.64 -1. 62 
5 -1. 59 -1.61 -1. 58 -1.50 - -1.61 -1. 59 

10 -1.57 -1. 61 -1. 58 -1. 52 - -1.66 -1. 58 
20 -1. 57 -1.61 -1.58 -1. 44 - -1.60 -1.58 

Remark: The asymptote for n ~ ~ is P = -1.577 

Table 2b 

A = 2n (n-1)/n, c = 0.01 

n "AI" "A2" "B" "c" "D" exact 

3 2.34 2.57 3.63 3.48 - 5.08 - 3.67 
5 18.64 6.81 3.81 3.0 - 5.5 - 3.85 

10 ? ? ? ? - 3.88 
20 ? ? ? ? - 3.89 

Remark : The asymptote for n ~ ~ is P = 3.890 

A = 2n (n-l)/n, c = 0.1 

n "Al tt "A2" "B" "en "D" exact 

3 2.00 2.19 2.23 2.27 - 2.58 - 2.40 
5 2.82 2.75 2.53 2.38 - 2.88 - 2.53 

10 3.00 2.90 2.63 2.30 - 3.05 - 2.56 
20 3.01 2.91 2.49 2.35 - 3.07 - 2.57 

Remark : The asymptote for n ~ ~ is P = 2.577 

A = 2n (n-l)/n, c = 0.5 

n "Alit "A2" "B" "C" "D" exact 

3 0.81 0.92 0.89 0.82 - 0.92 - 0.90 
5 1. 15 1. 14 1.19 1.02 - 1. 16 - 1.11 

10 1. 24 1.19 1. 21 1.09 - 1. 26 - 1. 17 
20 1. 25 1. 20 1. 22 1.10 - 1. 28 - 1. 18 

Remark : The asymptote for n ~ 00 is P = 1.188 
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~ is the shaded triangle in figure 2b. For n ~ ~, one obtains 

2 2 
PID] - 1-t 2 (c ) 

For c = 0, there is p = + ~. An examp~e of the correlation matrix for 

n = 10 is given below (table 3). The entries speak for themselves. 

Table 3 

n = 10, case b 

1.0 
.809 1.0 
.309 .809 1.0 

-.309 .309 .809 1.0 
-.809 -.309 .309 .809 1.0 

-1.000 -.809 -.309 .309 .809 1.0 
-.809 -1.000 -.809 -.309 .309 .809 1.0 
-.309 -.809 -1. 000 -.809 -.309 .309 .809 1.0 

.309 -.309 -.809 -1.000 -.809 -.309 .309 .809 1.0 

.809 .309 -.309 -.809 -1. 000 -.809 -.309 .309 .809 1.0 

Table 2b indicates that both methods "A" and "B" fail for very small 

c. Method "D" is not applicable. Method "e" is particularly suitable 

(see figure 2b and table 2b). 

It is seen that in these examples the methods "A" and "B" only 

produce acceptable results if the ci's are sufficiently large. The use 

of an importance sampling scheme as in method "C" is advantageous 

although that method also fails when c is very small. 

3.3. Negative correlations, the singular case 

Consider now PID] 

-1/n-1 = 0.25 

= ~n(~'~) with n = 5, c i = c = -3 and P ij = P with 

P ~ O. For p = -l/(n-l), ~ becomes singular and 

P = _ ",-l(PID]) = + ~. Because there is no easily accessible exact 

result, reference values for p are produced by method "D" despite the 

fact that the efficiency of method "D" is poor in this case. For 

example, for p ~ - 0.20, roughly 100 000 sample points were necessary 

to obtain a coefficient of variation less than 100% for the correction 

factor to "'(- Pc) in eq. (25). The corresponding results are collected 

in table 4 showing that method "B" is superior to all other methods. 

This is readily explained by its asymptotic nature. 
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P IIAt" "A2" "B" 

-0.10 9.71 9.71 9.71 
-0.15 11.62 11.61 11. 62 
-0.20 15.81 15.75 15.92 
-0.22 19.8 19.7 20.2 
-0.24 30.8 30.3 34.2 
-.249 54.0 50.9 106.4 

4. Conclusions 
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Table 4 

= 5, c = -3 

"c" "0" 

9.64 - 9.76 
ill 11.6 
ill 15.9 
ill 20.8 
ill 35 

? 

exact 

Apparently, there is no method which is superior to others over the 

whole range of arguments in the multinormal integral both with respect 

to numerical accuracy and with respect to the numerical effort. 

Method "AI" behaves suprisingly well despite its somewhat dubious 

theoretical background for the "small" intersection case. It is to be 

preferred to the simple FORM-method "AO" because it requires only very 

little additional numerical effort but is considerably more accurate. 

The improvements employed in method "A2" usually do not deserve the 

large additional effort. 

Because method "B" is theoretically identical to method "AI" for 

"large" intersections but has a sound theoretical background for 

"small" intersections and requires about the same computation time, it 

is prefereable to method "AI". 

However, these methods can fail for almost rotationally-symmetric, 

domains containing the origin where the directional sampling 

method "c" is a natural alternative. This method as implemented herein 

is only suitable for the "large" intersection case, however. The 

numerical effort of methods "A" and "B" roughly increase as n 2 whereas 

the simulation methods have only an increase proportional to n. There

fore, simulation methods generally become more efficient for very high 

dimensions and should, in fact, be preferred for n »50. The impor

tance sampling scheme "n", which still carries the potential for 

further improvement, might be advantageous for very high dimensional, 

non-degenerate "small" intersection problems. It is worth mentioning 



www.manaraa.com

173 

that if simulation methods are used the quality of the random number 

generator is of crucial importance. 

In summary, method "B" is recommended for general applications 

except for very high-dimensional cases where importance sampling 

schem~s appear to be more powerful. Such schemes which can also handle 

almost degenerate cases, however, still need to be developed. Both 

m~thods "c" and "D" as used in th~ above comparisons are not yet 

satisfying. ~lethod "B" as opposed to simulation methods has the addi

tional advantage of providing consistent derivatives of the multi

normal integral with respect to its arguments and which are needed in 

certain reliability problems. For these reasons, method "B" has been 

implemented in the general-purpose probabilistic analysis program 

package PROBAN [19]. 
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RELIABILITY OF FIBER BUNDLES UNDER RANDOM TIME-DEPENDENT LOADS 

INTRODUCTION 

Mircea Grigoriu 
Department of Structural Engineering 

Cornell University 
Ithaca, NY 14853 

Fiber bundles are parallel systems with brittle components (fibers). 

A fiber bundle with n fibers can resist a load in one of the damage 

states m = n, n-I, ... ,1 characterized by m unfailed fibers and n-m 

failed fibers. It is generally assumed that the applied load is 

equally shared among unfailed fibers and components have independent, 

identically distributed failure times ( 1 ,3,4) . Fiber bundles and 

Daniels systems have common features. However, the strength of the 

fibers of the Daniels systems is usually time invariant so that the 

weakest fiber in any damage state fails instantaneously or survives 

indefinitely. 

The failure time has been studied extensively for fiber bundles 

suhject to constant and time-dependent deterministic loads (3). The 

case of elementary random load processes hegan to be investigated only 

recently (1,4). The objectives of this paper are to extend some of the 

results in Ref. to more general load processes and include in the 

analysis dynamic effects that may cause significant differences 

hetween characteristics of load and load effect. 

FAILURE THIE OF INDIVIDUAL FIBERS 

ronsider a fiber subject to a deterministic time-dependent load 

1 ( T) ~ O. According to an extended version of Zhurkov's model, the 

failure time T, of the fiber exceeds t with probability (1,3,4) 

= exp {_It ~ (l(T»dT) 
o 

( 1 ) 
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in which ~ ~ 0 is the breakdown rule. A common form of ~ is the power 

law breakdown rule 

(k,p 0) (2 ) 

From Eqs. 1 and 2, 

(3 ) 

."hen lIT) = I is a constant. In this case, TI follows an exponential 

distribution with mean ETl = I/(kIP ). If the load is not always 

positive the breakdown rule in Eq.2 can be modified, e.g., to 

The Zhurkov model is based on experimental data on static fatigue of 

polymers and composites. These data show a linear relationship between 

the applied load and the logarithm of the failure time. The extension 

of this model in Eq. 1 is similar to Miner's rule in the sense that 

contributions to damage of various load cycles are additive and 

independent of each other. 

FA[LLIRE TINE OF FIBER BUNDLES 

Consider a bundle with n fibers characterized by independent failure 

times following the distribution in Eqs. and 2. The bundle is 

sUhject.ed to a load process nX(T) ~ 0 so t.hat the load per fiber In 

. n. ) st.ate m 1S ~ X(T since the load is equally shared by the unfalled 

fibers and there are m unfailed fibers in state m. Let Y be the 
m 

residence period in state m. The probability distribution of this 

variahle, condit.ional on Yn = Yn' ... 'Ym+l = Ym+l' is (1,3,4) 

= exp{ -ml, (-1 ) 

in which y(m) = Yn+·· .+Ym+l. Note that the residence time in state m 

lsi ndepennen t 0 f the namage accumul a ten in prey I ous sys t.em s ta t.",s . 

The failure time of the bundle is 
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1: 

m=l 
y 
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(5 ) 

Probabilistic descriptions of Tn and the reliability of the bundle 

in time t, Ps (t) = P(Tn > t), can be obtained in principle from Eqs. 

4 and 5. However, such an analysis may be impractical. Following 

sentions illustrate several simple methods for estimating Tn and 

Ps (t). 

CONSTANT LOAD PROCESS 

I.et X(r) be a constant load of deterministic magnitude x. From Eq.4, 

so that the mean and the variance of Tare 
n 

ET = 
n kxP 

m )p-l 
n n 

and 

E (T -ET )2 = 
n n 

These moments of T 
n 

n 
1: 

m=l 

can be approximated 

( 7 ) 

(8 ) 

by and 

for large values of n. It can also be shown that T 
n 

approaches a Gaussian variable as n~~ (3,4). However, the convergence 

to this asymptotic distribution is rather slow. 

Results are also available in closed-form for the distribution and 

the characteristic function of Tn (3,4). Therefore, the reliability in 

time t can be determined simply. 

TIME VARIANT LOAD PROCESS 

Assume that X(t) is a deterministic function of time x(t) and 

consider the change of varibles 
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(9 ) 

It can be shown by direct calculations 

rp.sidence periods y 
m 

in space s 

that the images Zm of the 

are independent and follow the 

exponential distribution P (Zm)z) = exp (-m 1- P nP z),(1,3,4). From Eq. 

6, 2m corresponds t.o a bundle with n fibers with k = 1 and subjp.ct t.o 

a constant load of intensity nx = n. Let 

S 
n 

n 

= r. 
m=1 

Z 
m 

( 10) 

The probability characterictics of this variable are given in the 

previous section. 

From Eq. 9, 

( 11 ) 

Since H(t) 

and (4) 

is a monotonically increasing function it has an inverse 

( 12) 

This equation can be used to estimate Tn from probability descriptors 

of Sn Other methods for characterizing Tn are considered in Ref.l. 

INDEPENDENT LOAD PROCESS 

Let X(r) 

distributed 

he a load process taking constant independent identically 

duration .d. 

values xi with probability 

Therefore, ds/dt = kx~ 
1. 

failure time can be obtained from 

S 
= j n VIs) ds 

o 

Pi over periods 

with probability 

in which VIs) = a. 
1 

= 1/ (kx~) with probability 
1. 

of constant 

Pi in .d. The 

( 13) 
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q 
qi = (Pi/ai) / ( E p./a.). These probabilities can be interpreted as 

j= 1 J J 
the fraction of time yes) is equal to a i . 

Probabilistic descriptors can be obtained for Tn from Eq. 13. For 

example, the mean of Tn is (1) 

ET n 

in which EXP = I 
i 

ES 
E_l_ ET n = I{ n xP 

or 

ES 
ET n = n k(EX)P 

x. 
1 

ES n 

Pi. It takes the form 

( 14 ) 

( 15) 

( 16) 

when the load process becomes a random variable with the distribution 

the marginal distribution of X(T) or a constant of value EX(T). The 

mean value of Tn in Eq. 14 is always smaller than the one in Eq. 16 by 

Holder's inequality. This result is expected because the two failure 

times correspond to fatigue under fluctuating and constant loads. On 

the other hand, ETn in Eq. 15 is usually larger than the corresponding 

value in Eq. 16 suggesting longer lifetimes under random constant 

loads (3). However, the reliability of bundles subject to these loads 

are typically in a reverse order to their average failure times for 

values of practical interest (1). 

LTNEAR DYNAMIC SYSTEMS WITH BRITTLE COMPONENTS 

Consider a single story frame with n nominally identical columns 

subject to a load Q(t) = Q sinwt applied horizontally at the beam 

level. It is assumed that (i) structural mass is concentrated at beam 

level; (ii) beams are continuous, infinitely stiff, and unbreakable; 

( iii) failure can occur only in columns and is characterized by 

independent failure times with distribution in Eq. where 

columns behave linearly and have the same 
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deterministic stiffness K and damping C; and (v) failed columns loose 

both stiffness and damping but continue to carry gravity loads. 

The equation of motion of the frame in state m is 

M ij m ( T) + (mC) V m ( T) + (m I{) V m ( T) = Q sin W T ( 17) 

in which M = the structural mass, Vm(T) = the story displacement at T, 

and T = 0 defines the initiation of state m. An alternative form of 

the equation of motion is 

W o,m 
X (T) + 10)2 

m oJrn Xm (T) = q sin WT ( 18) 

2 
with the notations Xm(T) = Vm(T)/h, h = the frame height, wo,m = mK/M, 

2~mwo,m = mC/M, and q = Q/(Mh). Note that both the natural frequency 

wo,m = wo,n ~n and the damping ratio ~m = ~n JJm7n decrease as 

damage progresses. The damping model can be unsatisfactory in some 

applications, e.g., damping usually increases in structures damaged by 

earthquake due to additional friction that may develop in failed 

components. Effects of the uncertainty in the damping model on system 

reliability are not evaluated in this study. These effects can be 

significant because ini tially overdamped systems may become 

underdamped in later damage states for the model in Eq. 18 and vice 

versa for a model that assumes an increase of damping with damage. 

The solution Xm(T) in Eq. 18 can be 

depends on the initial values Xm,o 

response in state m. These values 

obtained in closed form and 

= Xm(o) and Xm,o = Xm(o) of the 

are equal to Xm+1 (Ym+ 1 ) and 

Xm+1 (Y m+1 )· The residence in state m has the conditional distribution 

Y(m)+y 

P(Ym ) ylYn = Yn' ... , Ym+1 = Ym+1) = exp{- km J IXm(r) IPdT) 

(19 ) 

Table gives estimates of the mean and the coefficient of variation 

for the failure time of the weakest column and the frame. The 

estimates are based on simulation and Eqs. 18 and 19. 

Two preliminary conclusions follow from Table 1. First, redundant 

frames subject to lateral dynamic loads can be much safer than their 
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components. This result suggests that current reliability analyses for 

seismic design based on component performance may be unsatisfactory. 

Second, the usual consideration in, e.g., earthquake engineering that 

stiffness degradation is favorable needs further studies. Such 

favorable effects may be insignificant when the system starts at 

resonance, as shown by results in Table 1 for W = wO,n = 1. 

Reliability and other performance measures of the frame can also be 

determined by a method in Ref. 2 for estimating the reliability of 

Daniels systms with degrading strength and subject to time dependent 

loadR. According to thiR method and the Rosenblatt transformation, the 

residence periods Ym in Eq. 19 can be mapped into the standard 

Gaussian space {UI, ••• ,Un } by 

in which • = the distribution of the standard Gaussian variable and 

I = m 

y (m) +wm 
J 
Y(m) 

is a function of wm for given values of 

(Yn ""'Ym+l)' The reliability Ps(t) of frame in t is the probabili ty 

of the event 
n 
Z 

m=1 
Y 

m 
> t. From Eq. 20, this event is equivalent to 

n 
Z 1- 1 [_ km log(.(- U »J > t and the probability of this condition 

m=1 m m m 
can be determined approximately by methods for the analysis of time 

invariant reliability problems (2). The inverse 1-1 of function I has m m 
to be determined numerically. 

CONCLUSIONS 

Methods have been examined for estimating the reliability and the 

failure time of parallel systems with brittle components refered to as 

fiber bundles. It has been assumed that the fibers fail at independent 

identically distributed times following Zhurkov's model. 
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The paper has developed new estimates for the reliability of fiber 

bundles subject to random load processes and incorporated in the 

analysis effects of the dynamic response of these systems. These 

effects have been illustrated by a study of a one story portal frame 

with brittle columns having independent identically 

failure times excited by a sinusoidal load. 

distributed 
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Table 1: Failure Times for a Portal Frame with n = 8 Columns 

Estimated Failure Times 
Values 
(30 samples) Weakest Columns 

q = 1.0; 101 = wo ,n/ 2 

Mean 3.21 
C.o.v. 0.22 

q = 1.0; 101 = W = o,n 

Mean 2.85 
C.o.v. 0.27 

Structural Parameters : ~n = 0.05; wo,n = 1.0 

Failure Model Parameters: k = 0.1; p = 1.0 

Frame 

= 0.5 

16.10 
0.27 

1 

6.75 
0.29 
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I NTRODUCTI ON 

A PRACTICAL APPLICATION OF 
STRUCTURAL SYSTEM RELIABILITY ANALYSIS 

Y. Guenard & G. Lebas 
Elf Aquitaine - CSTCS - 64018 Pau - France 

This study was originated by a decision to drill new wells from an 
existing offshore platform with a drilling system different from the 
one the structure was originally designed for. 

A drilling system is usually supported by a substructure (see 
figure 1), itself connected to the platform. The new drilling system 
was going to induce heavier loads in the substructure, and it was 
therefore decided to study the safety of the new installation. 

Samples were taken from beams of the substructure. CHARPY V tests 
performed on those samples showed very low impact strengths, and the 
problem of the substructure safety against brittle fracture arised. In 
particular, the following questions were raised: are brittle failures 
likely to occur, and what are the consequences of such failures on the 
integrity of the substructure? Is it necessary to replace the sub
structure ? 

In order to answer those questions, it was decided to perform a proba
bilistic study taking into account the various sources of uncer
tainty (loads and resistances) and the redundancy of the structure. 
The study was performed in three steps: 

statistical analysis of CHARPY test data, 
definition of a brittle failure criterion, 
system reliability analysis of the substructure. 

This paper presents the three steps with particular emphasis on the 

last one. 
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Figure 1 drilling system substructure 

STATISTICAL ANALYSIS OF CHARPY TEST DATA 

On each sample taken from a beam. three CHARPY tests were performed. 

and this for two different temperatures {_5°C and +15°Cl. The results 

expressed by the impact energy Kcv showed a very large scatter. as can 

be seen on figure 2. There was not only scatter in the results from 

one beam to another. but also from one test to the other. within a 

single beam sample. 

As a first step. a variance analysis was carried out in order to 

assess the significance of the temperature as well as of the beam type 

on the scatter. Temperature was found to be a significant parameter 

but not the beam type. As a consequence. all the results corresponding 

to a given temperature could be considered as coming from a homo

geneous population and mixed in a single histogram. One of the two 

histograms is shown on figure 2. Both of them showed a bimodal shape 

which could' easily be fitted by mixed WEIBULL laws. Hence. the 

cumulative distribution function F kcv (xl of the results could be 

expressed as follows: 

Fkcv(x) = p x Flkcv(x) + (l-p) x F2kcv(x) ( 1 ) 
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with 
Fikcv(x) = 1 - exp (- (x/ti) bi) 

where ti is a scale parameter, bi a shape para.meter, and p the pro
portion of data in the first population. 

In each case, the two populations seemed to correspond to a brittle 
and to a ductile population. As expected, we observe a translation of 
the populations as the temperature changes. 

In addition to the CHARPY test values Kcv's, yield stress measurements 
were obtained. They showed a much smaller scatter (coefficient of 
variation of about 10%) and were well fitted by a Lognormal distri
bution. 

Pdf 

o fOO 200 3 0 
Cha"" V ted result (JJ 

Figure 2 - Histogram of the CHARPY test results 

DEFINITION OF A BRITTLE FAILURE CRITERION 

Principal assumptions 

Different welds of the substructure were inspected in order to detect 
any existing defect but none was found. However, in order to define a 
brittle failure criterion, we conservatively assumed that a 

R!!!!il!i~~_f!!f!_~!l_~!~l~~!~~!f~_~~~~f!i~· 

Based on the conclusions of two papers, (10) and (11), devoted to 
crack detection in offshore structures, two additional assumptions 
were made : 

all the defects are located at the weld toe, 
all are semi-elliptical surface cracks. 
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Regarding the statistical distribution of the defect dimensions (crack 
depth and length), the one given in (2) was chosen. It results from a 
statistical analysis of defects measured in nuclear pressure vessels, 
i.e. in structure of better quality than offshore structures as far as 
welding is concerned. Nevertheless the most probable crack dimension 
(length and depth) agree well with those given in (10) and in (11). 

According to fracture mechanics theory, brittle failure 
stress intensity factor K is larger than the fracture 
Therefore, we had to characterize the distributions 
parameters. 

Stress intensity factors 

occurs if 
toughness 
of these 

the 

KIC · 
two 

Different formulas have been proposed in the literature to compute the 
stress intensity factors in semi-elliptical surface cracks. Most of 
them take the following form 

K = S x In.... a / Q ( a , h) x F ( a , b ,h , ) ( 2 ) 

Where S, a, band h are respectively the tensile stress, the crack 
length, the crack depth, and the sample thickness (here the beam 
flange thickness) as shown on figure 3. In each case we decided to use 
the formula giving the largest stress intensity factor. These formulas 
can be found in (I), (5), (7), (8). (12). 

Fracture toughness 

The results of a CHARPV V test, Kcv, is not the fracture 
toughness KIc. However, these parameters are correlated. Using the 
data given by G.LECLERC (6), we performed a linear regression by the 
least square method between the two parameters Xi = 10g(KCv) and 
Vi = log(KIc). The following relationship was obtained: 

KIc = 10 Kcv· 64 x R (3) 

where R accounts for the model uncertainty. We looked for the distri
bution of the residual values Ri, Ri being calculated for each 
point(Xi, Vi) from Eq (3). The histogram was well fitted by a normal 
distribution with a mean equal to 1.01 and a variance equal to 0.021. 
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Stress Intensity factor 

K = aVn ~ . F 

Figure 3 - Dimensional characteristics of a semi-elliptical crack 

Brittle strength distribution 

Using the expression of K given by equation 2, and the expression 
of Kic given by equation 3, the brittle failure equation (K > K1C ) may 
also be written as follows: 

S > Sbrit (4) 

where Sbrit is defined by : 

Sbrit 10 Kcv· 64 x R 
In..a I Q(a,b) F(a,b,h) 

(5 ) 

The distributions of Kcv and R were obtained from the statistical 
analysis described above. The distributions of a and b were taken in 
the literature (see above). For each temperature and for different 
values of the thickness h, the distribution of Sbrit was obtained by 
MONTE-CARLO simulations. 

As expected, this distributions 
two populations of the CHARPY 
fitted by a kEIBULL law and 
wri tten as : 

showed two modes, corresponding to the 
V test results. Each population was 
the resulting distribution could be 

F(Sbrit;h) p x Fl(Sbrit;h) (l-p) x F2(Sbrit;h) (6) 
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Note that when h increases, all 

tend to cons tant va 1 ues. Also, 

the parameters 

the sma 11 er the 

of Sbrit. These 

of the distribution 

thi ckness, the more 

detrimental 

expected. 

the distribution results could be 

Probability of failure 

The probability of failure Pf is the probability of having a stress 

greater or equal to the brittle strength 

+-
Pf = P(S>Sbrit) = ~Fb(X) f(x) dx 

o 

(7) 

where f(x) is the probability density function (pdf) of Sand Fb{x) 

the cumulative distribution function of Sbrit. Noting fb1(x) 

fb2(x) the pdf of the two populations, this expression becomes 

and 

.00 f"ao 
P f = p" JF b 1 ( x) f ( x ) d x + (1- P ) " F b 2 ( x) f ( x ) d x 

o 0 

In a first approximation, and especially for the low 

(-5°C), the second term can be neglected. In other words 

bility of failure is almost the probability of being in 

(8 ) 

temperature 

the proba

the first 

population AND of having a stress greater than the brittle strength. 

This approximation was used thoughout the subsequent analysis. 

STRUCTURAL SYSTEM RELIABILITY ANALYSIS 

Methodology 

Because a complete description of the methodology can be found else

where (e.g. reference (4», only some general ideas are given here. 

A structural system such as the substructure studied here is made of 

many members which can fail individually in various modes. The finite 

element model of the structure is shown on figure 4. There are more 

than 1000 degrees of freedom. The usual failure modes accounted for in 

the codes are overall buckling of a member or plastification of a 

section. In this particular study, the brittle failure mode described 

earlier, is also considered. 
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Each failure mode is described by an equation g(X)=O such that failure 
occurs if g(X)~ 0, where X is a vector of parameters such as internal 
forces and moments, material properties, and geometrical charac
teristics. In a probabilistic analysis, some of the parameters are 
treated as random variables and each failure mode has a probability of 
occurrence. Estimating individual probabilities of failure is the 
first step of a structural system reliability analYSis. 

Once a member has failed, the structure stiffness is modified and the 
load initially carried by the failed member has to be more or less 
redistributed among other members. The load redistribution may trigger 
another member failure which itself leads to other failures until the 
structure cannot satisfactorily support the loads applied to it. 
Identifying the most critical failure sequences and estimating their 
probabilities of occurrence is the second and main step of a struc
tural system reliability analysis. 

In the two steps of the analYSiS, the so-called Advanced First Order 
Reliability Methods were used. These methods allow us to estimate 
individual probabilities of failure as well as probabilities of 
intersections or unions of failure events. A description of these 
methods can be found in many references, and in particular in (13) and 
(4) • 

The probability of a sequence occurring is always smaller than the 
probability of occurrence of the initial failure of that sequence. How 
much smaller? This is a critical issue because the answer is directly 
linked to the amount of safety reserve available beyond initial 
failure, i.e. the effective redundancy of the structure. One of the 
most interesting outcome of a system analysis is that it provides a 
mean of assessing that effective redundancy. For a better 
understanding of the results given below, it must be noted that the 
effective redundancy of a structural system depends on three main 
factors : 

mechanical redundancy, 
post-failure behavior of the members, 
statistical dependence of the individual failures. 
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Mechanical redundancy, measured by the degree of hyperstaticity of a 

structure, is what structural engineers usually mean by redundancy. 

Having some mechanical redundancy is a necessary condition in order to 

have effective redundancy, but it is not sufficient. Post-failure 

behavior (ductile, brittle or semi-brittle) of a member is an impor

tant factor because it governs the amount of load that has to be 

redistributed among the intact members. Statistical dependence is 

another important factor which comes from various sources. One of them 

is a common random source of loading such as the wind. In short, if 

the wind effect is likely to be high in one member, it is likely to be 

high in an other member. Hence the two individual failures are not 

independent. It turns out that statistical dependence is detrimental 
to effective redundancy. 

Finally, it must be noted that the absolute values of the proba

bilities of failure are rather meaningless for various reasons that 

wi 11 not be di scussed here. It is only when compared to each others 

that they can be best exploited. This is what is done when the effec

tive redundancy of a structure is assessed. It can also be of interest 

to compare individual probabilities of failure or failure sequences 

probabilities. 

In structural reliability analysis, probabilities of failure are often 

replaced by .safety indices. The safety index, often called p, is a 

decreas i ng function of the probabi 1 i ty of fa il ure and hence, the two 
are i nterchangabl e. However, there are two advantages in us i ng safety 

indices: their values are usually between one and ten, and it is less 

tempting to give them an absolute meaning. 

Failure modes definitions and general assumptions 

Three failure modes were accounted for in this analysis: overall 

buckling of a member, plastification of a section, and brittle frac

ture of a connecUon. The corresponding equations and the parameters 

involved are briefly presented. 

Buckling: Fcr - Fx = 0 

with brittle post-failure behavior. 
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Plastification: 1 - Fx/Np - Mz/Mp = 0 

with ductile post-failure behavior 

Brittle fracture: Sbrit - SCF(Fx/A + Mz/(l/v» = 0 

Fx and Mz are the internal axial force and the bending moment about 

the strong axis at one of the two extremities. Both are function of 

random load variables and are hence random variables themselves. The 

random load variables are the following: 

Tota 1 dead 

assumed to 

load 

have 

variation of 10%, 

resultant (the same for all load 

a lognormal distribution with a 

combinations) 

coefficient of 

Total live load resultant (depends on the load combination) assumed 

to have a lognormal distribution with a coefficient of variation of 

10%, 

Wind load resultant (depends on the load combination) assumed to 

have a lognormal distribution with a coefficient of variation of 

30%. This load corresponds to the 100 year extreme 1 minute sus

tained wind speed and includes model uncertainty. 

The assumptions regarding the above distribution types and coef

ficients of variation are based on reference (3) and on in-house data. 

T~e other parameters are defined as follows: 

Fcr is the compressive strength (buckling about the weak axis with 

effective length factor equal to 1) assumed to follow a lognormal 

distribution. SVEIN FJELD (3) suggests a coefficient of variation 

of 17%, but other references give lower values. Hence an average 

value of 15% is chosen. 

Np and Mp are respectively the plastic axial strength and the 

plastic moment (strong axis bending). Both are proportional to the 

yield strength which was found to follow a lognormal distribution 

with a coefficient of variation of 10% according to the test 

results analysis (see above). 

A and (l/v) are respectively the section area and elastic section 

modulus assumed to be deterministic parameters. 
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SCF is the stress concentration factor at the tension flange 
connection. Its value is conservatively assumed constant and equal 
to 1.7, which is an upperbound for the type of connections encoun
tered {see reference (9)). 

Sbrit is the brittle fracture strength defined above, where it was 
found to follow a bimodal probability distribution. The uncertainty 
associated to Sbrit is rather high (coefficient of variation larger 
than 50%). 

As can be noted, only strong axis bending is considered in the failure 
equations. This can be considered as a good assumption for the type of 
loading applied to the structure. 

Results and comments 

The results consist mainly in a listing of the critical 
sequences and the associated safety indices. They can be 
presented on failure trees with the following conventions: 

failure 
easily 

each branch represents 
of the three possible 
P=plastification), 

a beam (or beam connection) failure in one 
failure modes {Bu=buckling, Br=brittle, 

each node represents a damaged state of the structure, resulting 
from the occurrence of the failure sequence defined by the branches 
leading to that node, 

the numbers indicated on the branches are the beam numbers (defined 
on figure 4), 

the numbers indicated at the nodes are the safety indices corres
ponding to the probability of the structure being in the damaged 
state associated to that node. 

Two load combinations were considered. They correspond to different 
lay-outs of the drilling system. In each case, the worst wind 
direction was considered. Hence two failure trees were obtained, and 
one of them is shown on figure 5. Only the most ·likely failures are 
shown on this figure. The comments that follow apply to the two 
failure trees. 
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The first comment that must be made about these 

brittle failure modes are predominant. This is mainly 

uncertainty associated to the random variable Sbrit 

conservative assumptions made about this failure mode. 

results is that 

due to the 1 a rge 

but also to the 

The second comment is about the redundancy of the structure. Even

though brittle failure modes predominate (e.g. no residual strength to 

help after failure), the structure shows a large amount of redundancy. 

This can be inferred from the signi ficant increase in safety index 

that shows up between every two consecutive failures. In terms of 

probabilities, this means that the probability of an additional 

failure occurring, given that one has already occurred is rather small 

(typically a few percents). In this case, the origin of the redundancy 

is twofold: mechanical redundancy and independence of the failure 

modes. The (almost complete) independence of the failure modes stems 

here from the large uncertainty associated to the Sbrit variables, 

reasonably assumed themselves independent. Comparatively the common 

source of uncertainty (loading variables) that induces a dependency 

of the failure modes is rather small. Hence, globally, the failure 

modes are almost independent from each other. 

The failure tree shown on figure 5 is quite small for such a large 

structure. This is so because the loading is disymmetric and therefore 

only a few members are heavily loaded and likely to fail. This failure 

tree however is sufficient to show the effective redundancy of the 

structure. This is fortunate because only a few structural analyses 

(expensive part of the reliability analysis with a large structure) 

were required. Actually none of the sequences shown on the failure 

tree corresponds to the failure of the structure. Hence the effective 

redundancy of the structure is even larger than indicated by the 

results. 

Finally, something must be said about members 171 and 177. They are 

not primary members as far as the i ntegri ty of the structure is 

concerned (their only role is to support small pieces of equipment). 

Thi sis why no branch stems from the nodes correspondi ng to th.ei r 

failure, eventhough they are the most likely initial ones. 
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\ \ 
\268 

~59 264 

Figure 4 - Finite element model 
of the substructure 

Bu. : Buckling 

P. : Plastification 

Br. : Brittle fracture 
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CONCLUSION 

The conclusions of the study were that eventhough brittle failures are 
more likely than other failures. the structure is so redundant that a 
catastrophic sequence of brittle failures is very unlikely. 

We recommended not to replace the structure but to inspect regularly 
the most critical areas identified by the analysis. 

More generally. it has been shown that structural system reliability 
analysis can now be applied to practical situations. It must be noted 
that the most costly steps of the analysi s were not the probabi 1 ity 
estimations but the structural analyses used as inputs to these esti
mations. 

Fortunately, only a few structural analyses had to be carried out to 
conclude that the structure was redundant and safe. This will probably 
often be the case in practical situations where disymmetry in the 
structure as well as in the load will result in only a few most likely 
failure sequences. 

Of course. the methods used are not perfect and inprovements are still 
required but it is believed that they have now reached a stage such 
that they can be used as rational decision tools. 
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OUTCROSSING FORMULATION FOR REDUNDANT STRUCTURAL 
SYSTEMS UNDER FATIGUE 
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•• Institute of Fundamental Technological Researches. Warsaw. Poland 

1. Introduction 

In many cases the resistance properties of structural systems as 

well as the loads acting on the structure depend on time. If the loads 

can be modelled by stationary processes and the resistances are time

invariant the determination of the time-dependent reliability essen

tially is a problem of load combination for which a number of solution 

procedures exists. The only method capable to handle nonstationary 

loading with some rigour appears to be the 

and the same appears to be true for 

outcrossing 

cases where 

approach [I] 

resistances 

deteriorate with time, e.g. due to load-induced fatigue, corrosion or 

aging. This is demonstrated in [ 21 and elsewhere for structural 

components. If, however, such deterioration occurs in a redundant 

st,ructural system a reliability analysis meets serious complications. 

structural failure, then, is most likely the result of a sequence of 

single or multiple componental failures at different random times each 

of which changing the stress regime in the structure. Furthermore, the 

load trajectory determines the specific failure sequences. Failure 

phenomena of this type will especially be found in certain types of 

railway bridges, aircraft structures and in maritime structures such 

as ships or offshore platforms. The quantification of the 

time-dependent reliability of those structures is not only the basis 

for a proper design of such structures but, probably more important, 

allows the selection of suitable inspection strategies and rational 

decisions about time and necessity of repairs. 

The only studies known to the authors which have addressed this 

problem so 

Knapp/Stahl 

far are due to Martindale/Wirsching [3], Stahl/Geyer [4], 

[ 5] and the last author [6]. The first mentioned 
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references assume the distribution of times between componental 

failures as known but depending on the system states. Reliabilities 

are determined by Monte-Carlo-methods. In the last mentioned reference 

a first, not yet satisfactory attempt has been made to formulate the 

problem in the context of modern reliability methods. 

In this study the widely analytical outcrossing approach proposed 

in [2,7) for the determination of time-variant structural reliability 

under stationary and ergodic loading and non-deteriorating structural 

resistances is summarised and generalised to fatigue-induced 

deterioration of structural components (see also (8). Formulations 

are sought such that reliability calculations can be performed with 

modern first- and second-order reliability methods. This might enable 

the analysis of larger systems with many uncertain variables. The 

formulations are demonstrated at a simple example. 

2. Reliability of deteriorating structural components 

Assume a statically reacting, linear-elastic and redundant 

structural system subject to loads modelled by a stationary (and 

ergodic) Gaussian vector process 1.( T) • Further, suppose that failure 

can occur only in a finite number of preselected control points (hot 

spots) which will be denoted by elements or components of the 

structure. For these components it is always possible to derive the 

load effect process which, here, is assumed to be a scalar process, 

i.e. SJ.(T) = X a .. Li(T), and whose mean and covariance 
i J~ 

function are 

easily determined from the properties of 1.(T). Component failure 

some resistance (residual strength) occurs 

R .(T) 

whenever Sj(T) 

for the first 

exceeds 

J 
changes are understood 

time. Componental failure or componental state 

as discontinuous changes (decreases) in 

stiffness at that time causing a more or less abrupt redistribution of 

internal forces in the system. Here, only perfectly brittle elemental 

failures will be considered. In practical applications one might wish 

to model the rupture phenomenon more realistically, e.g. by retaining 

at least some fraction of the original stiffness after failure. The 

considerations 

modifications. 

to come also hold in this case with minor 

The resistances Rj(T) depend on a time-invariant vector of 

uncertain parameters such as initial strength Rj(o) and parameters 
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determining the details of strength degradation. They are collected in 

the uncertain vector ~ with given distribution function F9(~). Let, 

for the moment, ~ be kept fixed at ~ = ~. 

In order to determine the componental failure probability one needs 

to know the distribution of the time to first failure which, un

fortunately, can only be given exactly under very special conditions 

for the processes 8 j (T) and functions Rj(T). However, a general, 

asymptotic formula for the failure probability is [9] 

t 
= FT.(t) - 1 - exp[- f Uj(T) dT] 

J 0 

( 1 ) 

provided that the process R.(T) - 8.(T) fulfills certain mixing condi-
J J 

tions. Herein, Vj(T) is the upcrossing rate defined by: 

P ( (8 j ( T) S RJ. ( T )} n (8 j (T + .<I) > RJ. (T + .<I)}) 
= lin ( 2 ) 

Eq. (1) is valid provided that V.(T) exists. For example, V.(T) exists 
J J 

for Gaussian processes with continuously differentiable sample paths 

and sufficiently smooth deterioration functions. 

In the case of fatigue, the residual strength, strictly spoken,is a 

non-stationary process which depends 

Furthermore, the actual load amplitude 

crement of residual strength. For high 

on the load-effect process. 

determines the loadinduced de

cycle fatigue, however, one can 

assume that, asymptotically (large T), the process Rj(T) not only 

becomes uncorrelated with the process 8 j (T) but also has vanishing 

load-induced variability [2,10]. Therefore, it can be assumed that the 

Rj(T) are sufficiently smooth functions with existing derivative. 

Then, with Rj(T) being approximately a deterministic function with 

possibly uncertain parameters the following formula for Vj(T) can be 

derived [1] (reference to T now being ommitted) 

(3 ) 

where (r = (R -m )/0 , r the time derivative of r, ~2 the variance of 
s s 0 

the derivative of the normalized load effect process s = (8 - ms)/as 
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and ~(x) = PIx) - x .(-x). 

The residual strength function, typically, has the form 

A B 
r(r) = Kl (1 - K2 ~o r E[~S J) (4 ) 

where the constants can have concrete physical meaning. Assume, for 

example, the crack propagation law due to Paris/Erdogan [1,2J 

(5 ) 

with a the crack length, ~S the effective stress-range and C and m two 

material parameters. The crack becomes unstable for K = ~na s ~ Kc 

with Kc the fracture toughness. Then, it can be shown that for m > 2, 

-1/2 = KI = Kc (nao ) , K2 
a o is the initial crack 

ings of sIr). For a 

C nm/2a m/2-1 
o 

length. ~o is 

sufficiently 

(m - 2)/4, A = m, B = (m _ 2)-1. 

the rate of positive zero cross

narrow-band process sIr), it is 

finally E[~SAJ = (2~~)A Q S
A r(1 + A/2) according to Palmgren/Miner's 

rule [1]. 

The integral in eq. (1) of the outcrossing rate eq. (3) with 

threshold function eq. (4) can be approximated fairly well for suffi

ciently large thresholds r(r) by using the method of Laplace [2J. 

Following [2] where the application of this method to fatigue relia

bility problems is investigated in some detail, one obtains 

t hIt) lIt) = J ~(r) dr ... exp [f(t)J[I - exp [- tf'(t)JJ (6 ) 
0 f' (t) 

with 

w 
(r(t) ) hIt) 0 

~ = 
J~ 

w 
0 

(7 ) 

fIt) 
1 r 2 (t) = (8 ) 
2 

f'(t) = - r(t) r(t) (9 ) 

Eq. (6) can further be improved on those lines if necessary (see 

[2, 10J ). 
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The total failure probability with the paramters 2 = ~ now being 

random is: 

P f . (t) - 1 - J exp [ - I . ( t 19.)) dFQ ,J R J _ 
(10) 

A serious obstacle in applications is the multidimensional integration 

required in eq. (10). It is possible to reformulate the problem such 

that first- and second-order reliability methods become applicable 

(FORM/SORM) [12). Introducing an auxiliary standard normal variate [2) 

we find by solving for Tj(g,) 

P(UT.~ u) = 
J 

",(u) , ( 11 ) 

( 12) 

the Rosenblatt-transformation [13) for the random first-passage time. 

The required formulation for FORM/SORM is: 

( 13) 

The total failure probability can be given as 

(14 ) 

with ~ = I(Yg) the Rosenblatt-transformation of ~. Then, for small 

failure probabilities an accurate probability estimate is [12) 

P f .(t) N "'(-PI ~j (1 - K.S)-1/2 
,J i=1 1 

( 15) 

where 

(16) 

and the K. 's are the main curvatures in ~*, ~ = PI-pI I "'(-p) and 
1 

g(~) ~ 0 the event at the rigth-hand side of eq. (14). The inversion 

of the integral Ij(t) in eq. (12) is best made by Newton's algorithm: 
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J 
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( 17) 

Formula (3) has been found to be rather conservative for not too 

large values of r(t) especially for narrow band processes such as wave 

loading processes. The consideration of crossings of the envelope 

process E(T) of SIT) may yield better results. In this case, eq. (3) 

has to be modified into [11: 

(18 ) 

with wi = w! (1 - (A 1 (A o A2 )-1/2)2) and fRay(r) = r exp[-r 2/21 the 

Rayleigh-density. An even better result is obtained by using the in

terpolation between eq. (3) and eq. (18) proposed in [141 

The conditions for the validity of the approximation eq. (5) are still 

fulfilled but eq. (7) is replaced by: 

h( t) = (20) 

with 

(21 ) 

Formula (18) should be used in practical applications, not only 

because it gives more accurate results for a larger range of thresh

olds and bandwidth parameters 6 = A1 (A o A2 )-1/2 with Ai the i-th 

spectral moment of SIr), but is also more consistent with the basic 

assumptions underlying eq. (4). 

There are several further refinements to eqs. (11) which, however, 

have been found relatively insignificant in numerical applications. 
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3. System reliability 

Consider now system failure which in redundant structures requires 

several components to fail simultaneously or in a sequence. In 

general, many different sets of componental failures exist which imply 

system failure. For the moment,we concentrate on a certain set of com

ponential failures or a failure path k consisting of N = N(k) com-

ponents. Further analysis now must distinguish between various cases. 

Although the structure is assumed to behave statically (no accelerated 

mass forces) under normal loading, dynamic effects usually need to be 

considered for the internal load redistribution process. 

Assume that during a "local extreme" of the loading process there 

is a brittle componental failure. The load effect in another component 

H!l 
LTif 

Lit) 

faUure U_ 
of ca.ponent 

..... ~--~--TO'22------.,. 

LIT) 

T 

CASE II 

Figure 1: Immediate and delayed load-effect redistribution with and 

without dynamic effects 

will perform a damped oscillation around the statically redistributed 

load-effect function. Two extreme cases can be visualized. If there is 

small damping and a relatively large frequency of the oscillations as 
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compared to some characteristic frequency of the load, the additional 

dynamic load-effect after brittle failure of some component can be at 

most twice the difference between the static loadeffects before and 

after failure. The other extreme is where load-effect redistribution 

is of a rather damped nature. The redis-tribution follows nearly a 

negative exponential function. No dynamic overshooting occurs. 

Unfortunately, the details of dynamic effects in rupture phenomena 

have found very little attention in the literature and it is, in 

general, hard to say which of the two limiting cases is closer to 

reality. The authors are inclined to presume that the latter case is 

more representative in many cases. A numerical study of the two 

extreme cases of dynamic effects during load redistribution in a later 

example may highligth their significance. Except for this example we 

shall assume that no dynamic effects are present. 

Furthermore, we consider, in simplifying the subject, two extreme 

cases of the load redistribution regimes defined by the two limits of 

the ratio TR of (almost perfect) load-effect redistribution and the 

predominant period To of the load process. The case where redistribut

ion of forces takes a time much shorter than To' i.e. TR « To' is 

denoted by case I. For case II, on the other hand, the time required 

to redistribute the forces is much larger than To (See figure 1). 

During a "local" e~treme of the load multiple failures can occur in 

either case. It is even possible that all components in a failure path 

fail in a single "load wave" causing system collapse. An example of 

the corresponding failure tree is given in figure 2. In case I with 

"immediate" load redistribution during one local extreme of the load

ing process, there can be even progressive collapse during the process 

of redistribution while that is unlikely in case II. Therefore, case I 

is more critical than case II. 

Componental individual or multiple failures occur along the failure 

path at different failure times. The time to system collapse simply is 

the sum of the times between those partial failures. For non-deter

iorating structures, we have [7]: 

N(k) 
= P( r T. (~) - t ~ 0) 

i=1 ~ 
(22) 

Herein, t is some prespecified service time of the structure or, 

alternatively, the time to the next inspection. 
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For deteriorating structures the problem is somewhat more complex. 

The second failure time now depends on the first failure time since 

the latter determines the two damage accumulation regimes to be con

sidered when computing the second failure time. And the third. forth • 

... failure times analogously depend on all previous failure times. 

respectively. Hence. a possible formulation is [8.10]: 

N(k) 
= P( X T.(gJITI(gJ ..... T._I(g.ll - t ~ 0) 

i=I 1 1 
(23) 

A crucial assumption when proceeding further is that the various 

failure times can be assumed to be conditionally independent. More 

precisely. the failure times are conditionally independent and ex

ponentially distributed according to eq. (1). This requires that the 

failure events even at the end of a failure path are still rare events 

and. hence. the Poissonian character of the crossing events can be 

maintained also for the more developed degradation states of the 

system. That assumption also implies that after each single or multip

le failure the load effect process has a "restart" from the intersect

ion of the safe domains o£ all still unfailed components. Finally. it 

is assumed that the times between failures in a multiple failure event 

can be neglected as compared to the times between those events. i.e. 

9 1 «TI , Then. in generalising the approach for component failure as 

in eqs. (10) to (16) the following transformation appears natural: 

1 exp[-
T1 

1J 1 (rl9.) dr] .(UT ) - f = 
0 1 

1 exp[-
Ti 

IJI(rl~,UT ••••• UT . ) dr] .(UT . ) - 1 = 
0 1 1-1 1 

T1N(k) 1 - exp[- IJN(k) (rl9.,uT ••••• UT ) dr] = .(UT ) (24) 
o 1 N(k)-l N(k) 

Thus. estimates of conditional path failure probabilities can be ob

tain~d by eqs. (15) and (16) together with eq. (23). too. 

These probabilities are not only conditioned on the specific 

parameter vector 2 = 9,. They are further conditioned on the particular 

sequence of failure events in a path to failure and on the event that 

that particular path is the path to system collapse. One also has to 
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specify at a certain system state whether the next failure will be a 

single or multiple failure. The situation may be described for a 

system with only two components with time-invariant levels r 1 ~ r 2 
(see figure 2). 

Failure of these components under the assumption that there is 

delayed redistribution can occur in two ways. Either the load exceeds 

level but not r 2 so that the system fails in two time steps or a 

crossing of level r 1 is immediately followed by a crossing of r 2 which 

implies system collapse as before. As mentioned the short time 9 1 bet

ween those crossings is neglected. Now, the mean number of crossings 

XI" 

X(" 

Figure 2: Single and double crossings in failure tree for 

two-component system 

of r 1 but not of r 2 in [O,t] 

unconditional crossings of 

is 

is 

these quantities may be interpreted 

v 2 )t whereas the mean number of 

v 2t. Appropriately renormalised, 

as probabilities of having a 

single or the other type of crossings. The probability of occurence of 

failure by double crossings in the interval [O,t] then is the probab

ility that r 1 and r 2 are crossed subsequently times the probability 

that the first passage time T1 remains smaller than t. As indicated 

before, these probabilities must be normalised, i.e. divided by the 

probability that r 1 is crossed. This can be written as 
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with P(T l ~ t) = 1 - exp[-~lt]. Analogously, for failure in two time 

steps it is 

where T2 has distribution function FT (t) = 1 - exp[-~2t] (see [7] for 
2 

a rigorous derivation of this result) • The terms ~2/~l and 

(~1 - ~2)/~1 may, in fact, be interpreted as the probabilities of 

developing system failures in either of the branches of the corres-

ponding failure tree. Generalisation to more than two levels, to 

immediate- lie-ad effect redistribution and to time-variant thresholds is 

conceptually senaigthforward. 

In order to calculate the total branch probabilities one finally 

has to remove the condition on Q = ~ which, in general, also implies 

the consideration of a specific ordering of the thresholds. Note, that 

all events discussed so far depend on those parameter values. 

Therefore, consider now a general system with K possible failure 

paths to system collapse. The number of time steps in the k-th path is 

Lk . In order to completely define the failure sequence in that path, 

an ordering of the reduced resistances must be performed for each of 

the time steps and the elements must be grouped into components 

failing at the end of each time step. For convenience of notation, 

only the case of time-variant resistances is written out explicitely. 

The probability of occurrence of the k-th failure sequence during 

[O,t] can be given as: 

L 
P(Fk ) = J Pk (tI9=9) P ( nk 

~=9 1=1 
t 

for each 
time step present 

elements 

(25) 

The second probability corresponds to the specific ordering. In 

numerical calculations the variables r are represented by their Rosen

blatt-transformations. The first probability is: 
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Lk 
-_ pk P ( Tk ( 1 I) ) z 1 r nkl (l) . ~ t 

1=1 
(26) 

where the second term corresponds to eq. (23) with new notation. The 

first probability is the probability to be on path k. In these 

equations, the following notations are used: 

* 
1 !k denotes the numbers of the control points in the k-th path 

surviving at the beginning and along the l-th time step. 

* nkl(i) is an integer function which assigns in ascending order the 

numbers of the reduced thresholds during the l-th time step. 

Lk 

* pk = g p! is the weighting probability of being on the k-th 
1=1 

* 

* 

failure path where 

pI 
k is 

at the 

nkl (l) 

Again, 

I 
IJ n kl (l) 

the weighting probability for the l-th time step which ends 

upcrossing of i kl thresholds corresponding to the elements 

to nkl(ikl ) without upcrossing the nkl (ikl +l)-th level. 

the corresponding events are expressed in the standard space 

by auxiliary standard normal variables making use 

(see [10), for details). 

of = ~(U!) 

k I 
T I (r n k I ( 1 ) ) is the time to the first upcrossing of the lowest 

relevant level for the l-th time step, which is also the length of 

this time step. 

A similar formulation can be given for deteriorating resistances. 

From eq. (25) it can be seen that the computational task now also 

involves the computation of the probability of intersections which can 

conveniently be carried out by the methods desribed in (12). 

Finally, if the parameter ~ = ~ is uncertain and there are K 

possible paths to system failure the overall failure probability is 

the probability of the union of the path failure events 

(27 ) 
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This probability can be bounded by (see, for example, (121: 

K 
S P(F 1 ' + Z (P(F,,' - max (P(F n F I ) ) 

{ ,,:2 p<" " P 
Pf(tl K 

~ P( F 1 ' + Z (max(O,P(F,,1 - Z P(F" n F I}) 
,,:2 p<" p 

(28) 

In general, many paths to system failure exist. In practical com

putations it will, therefore, be necessary to limit the analysis to 

only a few failure paths which prefereably are the dominant (most 

likely) ones. They can be found by appropriate search algorithms. 

Suitable algorithms have been proposed by several authors (15,161 for 

time-invariant structural system reliability analyses. The one propos

ed in (151 which has been adapted to time-variant reliability in (101 

may also be used here. The algorithm can be described as follows. Let 

there be a set of M : (1, 2, ••• ,) failure events a finite number of 

subsets of which lead to system failure. For the intact structure all 

componental failure probabilities are computed. Each component is the 

starting point of a failure tree. The component with largest failure 

probability, then, is transferred into a failed state which implies an 

updating of the stiffness matrix of the system. In order to find the 

next most likely state changes in the system the joint probabilities 

of the first state change event and the remaining failure events are 

computed. If one or more of these joint probabilities are larger than 

the previously calculated probabilities the corresponding component(s) 

is (are) transferred into a failure state. A second updating of the 

stiffness matrix is performed and the process continues with now 

exactly three failure events involved. If, however, smaller probab

ilities have been calculated previously, the degradation process con

tinues at those components after having restored the system properties 

back to the degradation state of interest. Eventually, a sequence 

failure event will be found: Its failure probability is the probab

ility of all events in that sequence. One still has to check whether 

there are probabilities for some incomplete failure sequences which 

are larger than the sequence probability just found. If so, the de

gradation process in these sequences must also be continued until 

sequence failure or until all probabilities of in-complete sequences 

become smaller than the smallest sequence probab-ility observed so 

far. This terminates the algorithm. A lower bound for the system 

failure probability then is the probability of the union of all 

complete failure sequences. The lower bound in eq. (281 applies. An 
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upper bound is the probabIlity of the union of all complete and 

incomplete failure sequences for which the upper bound in eq. (28) 

should be used. This technique to produce strict probability bounds by 

a combination of an optimal search for dominant complete and the 

investigation of further incomplete failure paLbs and eq. (28) 

facilitates the analysis of lamgeT ,systems very much. 

4. Numerical example 

Following [17] we shall investigate im more detail one of the 

mechanically simplest redundant systems shown in figure 3. This 

so-called Daniels-system (after Daniels who first studied its time-in-

variant reliability in [18]) has n physical components whose 

stochastic properties all have identical distribution function. If a 

component fails its load is distributed equally among the remaining 

components. These assumptions enable not unly a number of simplifica

tions in the formulation but also circumvent t:b.e problem of consider

ing a large number of failure paths by introducing order statistics 

for the elemental resistances which is possible even for relatively 

complex stochastic dependence structures of the components. We shall 

especially use certain results presented in [19] for the time-in

variant case. 

Figure 3: 4-component Daniels-system 

We adapt the following fatigue deterioration model which is 

somewhat simpler than the one associated with eq. (5) (See, for 

example, [20]). It is assumed that the decrement of residual strength 

is pro-portional to some function of the stress range ~S and inverselY 

pro-portional to some power of the actual strength, i.e. the governing 



www.manaraa.com

213 

differential equation is: 

- h (.dS . ) I (m R. ( r ) ) m-l 
J J 

(29) 

Using the usual S-N-curve information in the form KNSb = 1 together 

with Palmgren-Miner's damage accumulation hypothesis for a narrow-band 

Gaussian load effect process leads to [2): 

R. (T) 
J 

(2U)b b = RJ,(o) (1 - K aS. r(l + b/2) 
R~(o) J 

J 

r)l/m (30) 

This is a monotonically decreasing function for any positive m. Assume 

further that the only uncertain variable is the initial strength R(O) 

which is normally distributed with mean E[R(O)] and standard deviation 

D[R(O)]. Alternatively, the paramters K, b, and m can be introduced as 

random variables, but must not depend on j in order to render the used 

formulation possible. By some additional considerations, this ide

alisation could be removed. In applications, there are good reasons to 

assume a non-negligible inter-element correlation. Therefore, for 

initial strength values which are positively and equally correlated 

one has the following representation (Rosenblatt-transformation) for 

the various R.(o)'s: 
J 

Rj(O) = E[R(O)] + D(R(O)I (Uo JP + Uj Jl-p), j = I, .",n (31 ) 

In order to establish the sequence of element failures, we need the 

order statistics of (R 1(r),R2 (r), ••• ,Rn (r». Since the parameters in 

the second factor in eq. (30) are assumed constant, the order statist-
A A A 

ics R1 (T) ~ R2 (r) ~ .•• ~ Rn(r) can be derived from the order statistics 

of the Rj(O)'s. In (19J it is shown that the order statistics of a 

vector of independent standard normal variables have the Rosenblatt

transformation: 

U1 = .-1 [1 - .(-U )l/n] 
1 

(32) 

.-1 j 
.(-U )1/(n-k+l)J U. = (I- II 

J k=1 k 
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Therefore, 

(33) 

with Uj'S as given in eq. (32). Eq. (33) inserted in the corresponding 

eq. (30) yields the required order statistics Rj(T). 

The numerical calculations are performed with the following set of 

data: 

SIT) - N (0.5, 0.1), 

Rj(o) - N (0.9,0.2), 

n = 4, P = 0.3, Vo = 1, t = 106 

Furthermore, for simplicity formula (3) is used throughout instead 

of the presumeably better formula (18). 

At first, the case of time-invariant elemental resistance is in

vestigated by setting m ~ ~. It will be used to quantify the effect of 

dynamic load redistribution after failure of a redundant component. 

Case I, that is immediate load redistribution without dynamic over

shooting is calculated as follows. The extreme value distribution of 

the load is: 

Fmax SIx) = exp [-v(x) t1 

[0, t1 

which easily is transformed by: 

S max 

The system failure probability must be determined from [17,191: 

n n 
Pf(t) = P( n {(n - j + 1) R. (0) - S $ 0» = P( n F.) 

j=l J max j=1 J 

(34) 

(35) 

(36) 

The numerical calculations by using the schemes developed in [121 

yield the following results in terms of the equivalent or generalized 

safety index p = - .-l[p(.)]. The individual failure event and inter

section safety indices are: 
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P(F 1 ) = 2.79; P(F1 ) = 2.79; 

p(F2 ) = 3.36; P(F 1 n F 2 ) = 3.48; 

P(F 3 ) = 2.93; P(F 1 n F2 n F3 ) = 3.66; 

= 3.66; 

It is obvious from the individual safety indices and from the in

crements in the system indices that the second component "dominates" 

the system. If this fails there is only a slight increase in reli

ability. And given that the third component fails, there is a prob

ability of almost 0,5 that the forth component will also fail. 

The case of (maximum) dynamic overshooting is also easily formulat

ed. Let j-1 components already be broken. An upper bound to the 

additional dynamic load for component j to break is Rj _ 1 . Therefore, 

eq. (36) is modified to: 

n 
= P( n ((n-j+l) RJ,(o) - R J'_l(o) 

j=l 

n 
= P( n F J.) 

j=1 
(37) 

The numerical results for that case are: 

P(F1 ) = 2.79; ,tl(F 1 ) = 2.79; 

P(F 2 ) = 2.43; P(F 1 n F 2 ) = 3.31j 

P(F 3 ) = 0.03; P(F 1 n F2 n F3 ) = 3.31; 

P(F4 ) = -3.22; ,o(F 1 n F2 n F3 n F4 = 3.31; 

As expected, the order statistics safety indices now decrease 

rapidly. The effect of redundancy is moderate after failure of the 

weakest component. The system safety index is smaller than in the case 

without dynamic effects. Having in mind that the Daniels-system is one 

of the most favourable ones with respect to redistribution with or 

without dynamic effects one concludes that dynamic effects, in 
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general, require special attention in applications. They are neglected 

in the following. 

Note that the foregoing formulation followed the classical extreme 

value approach, i.e. did not explicitely use the time step approach 

proposed in section 3. A recalculation by the time step approach in

cludung multiple failures with immediate load-effect redistribution 

actually reproduces the same system safety index which verifies the 

assumptions made and the theory developed. 

Instead, the case of delayed load-effect redistribution is studied 

in more dedail by explicitly considering the possibilities of multiple 

failures in subsequent time steps. The basic formulation is given in 

eq. (22). Various failure paths as shown in figure 4 must be taken 

into account. Two safety indices are given for each node in the 

3 ( 3 . 30) _ 4 ( 3.30) ., r 3.95 3.95 

~ "i:;:' in4'::::'-l 
2n3(4.40) 4(4.40)_] 

4.72 4.72 
A 

(2.95 ) 
2.79 

-2n3n4 (5.20)-:1 
5.62 

--[i':::;1 4(4.43)--i 
4.62 

1n2 (4.58) 
4.45 

3n4( 4 .96)....,] 
5.32 

A A A 

(5.51 ) 4(5.32)....,] 1n2n3 5.53 5.52 
A A A A 

(6.27) ....:j 1n2n3n4 6.45 

Figure 4: Time step appraoch for Daniels-system - delayed 

redistribution, time-invariant resistances 

3.95 I 

4.73 IV 

4.72 III 

5.62 VII 

4.62 II 

5.32 V 

5.52 VI 

6.44 VIII 

failure tree. The upper value corresponds to the first-order reli-

ability method, i.e. to ~(-p). The lower value corresponds to 

eq. (15), i.e. the (asymptotic) second-order reliability method which 

can be shown to be very accurate in this case. It is seen that the 

second-order corrections are significant in this example. 
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The system safety indices along a failure path increase as it 

should be. But from figure 4 it .is evident that after individual or 

(IQO) 
-1(2.79) 

(0.75) 

(26.2;52.2;21.6) 

~
3(3.95) --4(3.95)-; 

(0.75;0.76;0.81) 

(32.8;67.2) (23.8;50.3;25.9) 
2 ( 3.68) 3n4 ( 4.73) -,J 

(0.75;0.76) (0.75;O.76;0.lg) 

(26.4;73.6) 
-- 2nS (4.72) ----4 (4.72) -,J 

(0.75;0.17) 

(22.6;77.4) 
2nSn4(5.62)~ 

(0.75;0.07) 

(82.2;17.8) 
3 (4.62) -----,4 (4. 62)~ 1:0.15;0.75) 

(100) 
tn2 (4.44) 

(0.15) 
(71. 5 ;22.5) 

3n4(5.32)--.1 
(0.15;0.25) 

l1QOl 
In2n3 (5.52) - 4 (5.52)....:J 

(0.07) 

(109) 
in2n3ni (6.44)-1 
(0.03) 

Figure 5: Time step appraoch for Daniels-system - delayed 

redistribution, time-invariant resistances 

3.95 I 

4.73 IV 

4.72 III 

5.62 VII 

4.62 II 

5.32 V 

5.52 VI 

6.44 VIII 

mUltiple failure of the two weakest elements in a failure path little 

extra reliability is gained when the last two elements are also 

included in the analysis. This corresponds to the findings for 

case I.Furthermore, although the dominant failure path has no multiple 

failures, failure paths with two or more multiple failures cannot be 
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discarded a priori as insignificant. In fact, the second most likely 

failure sequence starts with a double crossing (the ordering of 

failure paths according to increasing safety indices is indicated in 

the last column in figure 4 by roman numbers). 

An interesting piece of information about system behavior is also 

the (most likely) fraction of time spent in each system state of the 

(100) 
1(1.98) 

(100) 
-+--ln2 (4.08) 

(100) 

(51.4;37.5;11.1) b 3 (2.84) - 4 (2.84) -; 

(58.6;41.4) (53.3;37.9;8.8) 
2(2.63) 3n4(3.96)-; 

(58.2; 41. 8) 
2n3(4.10) -----4(4.10)-] 

(57.8;42.2) 
2n3n4 (5.22) ---i 

(90.7;9.3) C 3 (4.20) ----- 4 (4.20)-'1 

(91.7;8.3) 
3M( 5 .01)-'1 

In2n3 (5. 35 ) -- 4 ( 5 • 35 ) -] 

(100) 
In2n3n4 (6.38)--; 

Figure 6: Time step appraoch for Daniels-system - delayed 

redistribution, time-variant resistances 

2.84 I 

3.96 II 

4.10 III 

5.22 VI 

4.20 IV 

5.01 V 

5.35 VII 

6.38 VIII 

total "most likely" time to a degradation state in a specific failure 

path indicated in figure 5 just above the node system safety index. 

For example, for the first failure sequence we see that it takes 26.2 

% of the sequence life to failure of the first component, another 52.2 
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% to the second component failure and 21.6 % to the third 

failure which is immediately followed by failure of 

component 

the last 

component. In the second-critical fifth failure sequence 82.2 % of the 

sequence life is spent without any failure but sequence failure occurs 

shortly after joint failure of the first two components. The values 

below the safety 

below eq. (26). For 

add up to one, 

eq. (28) is 3.95 ~ 

indices are 

each node in 

of course. 

~ ~ 3.93. 

the branch 

the failure 

The system 

probabilities 

tree these 

safety index 

p! described 

proabilities 

according to 

Comparison of the system-p's corresponding to case I (~ : 3.66) and 

case II (3.95 ~ ~ ~ 3.93) finally verifies that case II has higher 

reliability as it should be; although the difference is not very large 

in this example. 

A similar figure 6 has been produced for components subject to 

fatigue, i.e. by applying eq. (23) with eq. (30) with the following 

parameters and distribution functions (LN (.): log-normal distribu

tion): 

b : 3; 

m - LN (E[m] : 4, VIm]: 0.2) 

K (2 3/2 )b o~. r(l + b/2) - LN (E[.] : 10-3,VI.]: 0.2) 
J 

These parameters are common to all system components. The other 

parameters are kept as in the case with non-deteriorating resistances. 

Therefore, the ordering of the residual strength levels introduced by 

ordering the R(O)'s remains the same throughout the life time of the 

structure. Only case II is evaluated numerically. The safety indices 

now are substantially smaller. The system safety index is bounded as 

2.84 ~ ~ ~ 2.83. In addition, the ordering of the failure sequences 

according to their system safety index is different from that in 

figure 4. As expected, the sequences spend more time of their total 

life-time in the earlier degradation states as indicated by the 

fractions of time just above the node safety indices and which may be 

compared with those in figure 5. 
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5. Summary and Conclusions 

The reliability of degrading structural systems under stationary 

Gaussian loading with and without strength deterioration of the 

components due to fatigue is investigated. The fatigue deterioration 

model is based on fracture mechanics concepts. A formulation is chosen 

which allows to follow up structural degradation in time. The pos

sibility of multiple componental failure is taken into account. Two 

extreme load effect redistribution regimes after componental failure, 

i.e. immediate and delayed redistribution, are investigated. Dynamic 

effects during redistribution have been considered by a limiting case, 

i.e. that the additional dynamic load effect in an unfailed element 

can be at. most. as large as the difference bet.ween t.he static load-ef

fect.s before and after load redistribution. A rigorous treatment of 

dynamic effects appears to be rather complicated and is under study at 

present. 

The numerical results for system collapse according to the above 

time-variant formulation based on time steps have been checked with 

the appropriate extreme-value formulations. Excellent agreement was 

found supporting the various theoretical (asymptotic) arguments in the 

derivations. 

In contrast t.o extreme-value formulations the time-step formulation 

provides not only the time-Ienghts between componental failures in 

different failure paths which mayor may not be identified as the 

dominant ones. The time-step formulation is also capable to handle the 

various internal load redistribution regimes including dynamic 

effects. 

In another paper under preparation, it will be shown how to in

corporate inspection results as a means for updating the probability 

estimates via Bayes theorem [21]. It appears that the proposed method

ology is a promising tool for correctly treating reliability problems 

connected with inspection and maintenance of structures. 
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ABSTRACT 

OPTIMAL BRIDGE DESIGN BY GEOMETRIC PROGRAMMING 

N. C. Das Gupta H. Paul C. H. Yu 
Department of Civil Engineering 
National University of Singapore 

This paper presents an application of generalized geometric programming to the 

optimal design of a prestressed concrete pedestrian bridge deck. The actual cost of 

construction consisting of prestressing, formwork and concreting is minimized. 

Constraints are formulated as stipulated by the British Code of Practice CP 110, 

related to bending and shear stresses and minimum concrete cover. A sample optimal 

design is included in the paper. The method presented can be applied to other 

engineering design problems by appropriately modifying the problem formulation. 

1. INTROUUCTION 

In structural engineering, the general layout of any structural system is 

usually governed by its functional requirements. The system is then analysed for 

specified loads and the various elements of the system are designed to satisfy 

certain performance criteria. The design also aims at finding the least cost of the 

system. The methodology adopted to achieve the specific goal of least cost subject 

to satisfying the performance criteria is structural optimization. 

One of the optimization techniques which has been used in some structural 

design problem is geometric programming (GP). The basic theory and formal proofs 

for this optimization technique can be found in (I), (2) and (3). A GP problem is 

associated with objective functions and constraints, which can be expressed in the 

form of signomials. Most structural design equation as stipulated by the 

engineering codes of practice are expressed in the form of signomials. Hence, the 

computational algorithms to solve GP problems are well suited to such structural 

optimization problems. 

Several researchers [4, 5, 6) have used the GP model for optimal design of 

structural systems. This paper presents the formulation of a GP model for the 

optimal design of prestressed concrete hollow pedestrian bridge decks. Fig. shows 

sectional views of such a bridge deck. The design problem presented in this paper 

is formulated on the geometry, imposed loads, stresses and deflection criteria 
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permitted by the relevant British Code of Practice. 

2. OBJECTIVE FUNCTION 

The objective function of the GP model incorporates the cost of concrete. 

formwork and prestressing steel. The total variable costs are obtained as follows: 

Yo Cost of concrete + Cost of prestressing + Cost of fornwork 

CAL+ __ F_. C +C A 
c cO. 7 f .. , t Ps t P f' f 

pu 
(1) 

Cc ' Cpo Cf are unit costs of concrete ($/m3). prestressing steel ($/kg) and 

formwork (S/m2) respectively. It may be noted that Cp includes the cost of material 

and prestressing operation. Land Lt are the span length (m) and the length of 

prest ressing tendon (m) respectively; Ac and Af cross-sectional area of concrete 

(m2 ) and surface area of formwork (m2 ) respectively; P the density of prestressing 
st 

steel (kg/m3); F the prestressing force at transfer (N); fpu the steel 

characteristic strength (N/mm2); the coefficient 0.7 is the ratio of minimum steel 

stress to the characteristic strength of prestressing steel. 

e 

F~ F 

1_ l 

(a) Simply Supprted Span 

H 
d .. b 0 

Q 0 0 0 0 0 0 0 0 

b 

(b) Cross-sectional view 

Fig. 1 Bridge Deck 

Q 

·1 

] 
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3. CONSTRAINTS 

The constraints of the GP model are obtained from the following considerations: 

allowable bending stresses of concrete at transfer of prestressing and at 

serviceability limit state, allowable shear stresses of concrete, adequacy of 

concrete section, maximum available eccentricity of prestressing force and 

geometrical restrictions. The formulation of the constraints is carried out in 

accordance with the 8S Code of Practice CP 110 (7) for prestressed concrete 

design. The ultimate moment and deflection at service are not included as 

constraints in the formulation as these are expected to be non-governing. This is 

to reduce the complexity of the problem but these conditions are later verified 

manually. 

3.1 8ending Stress Requirements 

The bending stresses in concrete at transfer of prestressing and at 

serviceability limit state must not exceed the allowable stresses as specified in 

section 4.3 of the CP 110. The allowable tensile and compressive stresses at 

transfer are denoted by f tt and f ct respectively and those at service conditions by 

f ts and fcs respectively. The critical sections for this constraint are at midspan 

and at end-supports. The bending stress constraints are as follows: 

e , k + ll/F) lM i - f Z) m n tt 

e , -k + ll/F) lM i + f Z) m n ct 

e .. k + [ nlF 1 lM - f z) max cs 

e .. -k + [ -Fl J lM + f z) n max ts (2) 

where e is the eccentricity of prestressing tendons with respect to the centroidal 

axis of the concrete section; Mmin and ~sx the minimum and maximum bending moments 

(kNm) at transfer and service conditions respectively; k and Z the distance (m) from 

the centroid of concrete section to the limit of central kern and section modulus 

(m3) of the deck section respectively; n the ratio of the final prestressing force 

to the initial prestressing force; F the prestressing force at transfer and n the 

long term loss factor. 
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3.2 Section Adequacy 

To ensure the minimum concrete section to satisfy the bending stresses, the 

following constraints are required in general for each of the critical sections 

(3) 

3.3 Maximum ~ccentricities 

The maximum eccentricity of the prestressing tendons allowed for any section is 

half the section depth reduced by the minimum concrete cover required, c(mm), ie., 

e ([ d/2 - c J 
max 

(4) 

where d is the section depth (mm). 

3.4 Shear Criteria 

As specified in CP 110 [7), shear is checked for ultimate limit state for both 

cracked and uncracked sections in flexure. The most critical section considered for 

such shear check is 0.5 m from the end support. The shear constraints are expressed 

as follows: 

For uncracked sections, 

the ultimate shear resistance of concrete alone is 

v 
co 

(5) 

where j is the number of hollow cores, b the overall width (mm) of the deck, r the 

core diameter (mm) , 

(6) 

f n F/A 
cp 

feu the characteristic concrete cube strength (N/mm2 ), A the effective 

cross-sectional area (mm2 ) and V the shear force (kN) due to ultimate load. 
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For cracked sections, 

the ultimate shear resistance of concrete alone is 

V cr 

where Mo 

11 - 0.55 f If ) v (b - 2jr)(d - c) + M VIM;. V pc pu c 0 

0.8 fpt lie 

and fre is the effective prestress (N/mm2 ) Vc the ultimate allowable shear 

(N/mm ), V and M the shear force (kN) and bending moment (kNm) respectively 

section considered due to ultimate load, I the second moment of area (mm4). 

4. AN IlXAMPLE 

(7) 

(8) 

stress 

at the 

In order to illustrate the application of the method, an example of a simply 

supported prestressed concrete pedestrian bridge deck with three hollow cores is 

presented in this section. 

4.1 The Design Problem 

A prestressed concrete bridge deck as shown in Fig. 1 is to be designed for a 

live load of 5 kN/m2 , where L = 22 m and b = 2.3 m. The design specifications are 

given in Table 1. 

Table 1 Design Specifications 

Prestressing steel strength 

Concrete cover 

Imposed load 

n 

fcs = 

fpu 

13.2 N/mm2 , f ts 

1750 N/mm2 

50 mm (min.) 

5 kN/m2 

0.8 
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The assumed costs of various items are 

Cc $300/m3 

Cf $ 251m2 

Cp $ 2/kg 

The object lve function and constraints are obtained substituting the values 

based on design specifications and cost factors and are summarized below. The 

number of hollow cores considered for the formulation of the model is three. It is 

also noted that the shear for the cracked state is checked manually to reduce the 

difficulty of the problem. 

Minimize 

Yo 16280d + 3.26F + 10367r - 62204r2 

Subject to 

Bending constraint at mid-span section 

O.00261eFd-2 + 12.29r4d-3 + 35.70r2d-2 + O.Olr4A- 1d- 3F 

- 8.71d-1-FA- 1 , 1 

0.00030eFd- 1 + 4.10r2d- 1 + 19.76r4d-2 + 0.000I2dFA- 1 

- 1.61d - 0.OOI41r4FA- 1 d- 2 , I, 

0.38 d2A- 1e-1 + 4174F- 1de- 1 + 870F-1e-1 + 77754F- 1r4d- 1e-1 

- 4.71r4d- 1A- 1e- 1 - 17106F-1r 2e-1 - 6325F- 1d2e- 1 , I, 

Bending constraint at end sections 

, I, 

O.00007FA-1 + 0.00007FeZ-1 <: 1, 

Section adequacy constraint 

<: I, 
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Maximum eccentricity constraint 

.; 1, 

Shear constraint 

.; 1, 

.; 1. 

4.2 Solution of the Design Problem and Discussion 

There are several algorithms which can be used for solution of the design 

problem described in section 4.1. The primal-based GGP, as developed by Dembo [8) 

and dual-based SIGNOPT, as developed by Templeman [9) are two such algorithms. This 

GP model has 7 independent variables and 22 degrees of difficulty. The optimization 

by GGP has been performed on the formulation given in section 4.1 and also on other 

cross-sections with two, four and five hollow cores and a solid cross-section. The 

results of such optimization, as given in Table 2, show the comparative evaluation 

of the variables with the increasing number of hollow cores. The most economic 

cross-section is with the one with two hollow cores. 

Table 2 Optimum design variables for Simply supported bridge deck 
(Width s 2.3 m ; span = 22.0 m) 

No. of hollow cores 

Variables 

0 2 3 4 5 

, 
d (m) 1.035 1.000 0.7!!7 0.823 0.869 

F (kN) 16~64 6882 7369 10161 12131 

e (m) 0.172 0.234 0.189 0.172 0.165 

r (m) 0 0.400 0.283 0.187 0.130 

A (m2) 2.380 1.295 1.053 1.452 1.733 

Obj. Function ($) 82690 39600 39870 53220 62570 

CPU time (sec) 1.52 1.70 1.70 1.70 1.70 

The same pedestrian bridge with solid cross-section has also been optimized 

using SIGNOPT and the values of d, F, e and objective function obtained are 0.948 m, 
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15192 kN, 0.158 m and $75,462 respectively. The CPU time consumed for the problem 

is 2.8 sec. All the values are about 8-10% less than the corresponding values 

obtained for the same problem by GGP optimization. 

4.2 An Example of a Two-Span Pedestrian Bridge 

The GP-optimization model has been applied to another design problems. Fig. 2a 

and 2b show the elevation of two span simply supported bridge and two span 

continuous bridge respectively. The sectional view of both the bridges is same and 

is given in Fig. 2c. The objective function and constraints are formulated in the 

similar manner as given in Section 4.1. The cost of transportation and erection are 

not considered in the model formulation as in the previous example. 

For the solution of this design problem, the primal based GGP algorithm is 

used. The results of this optimization model are given in Table 3. The 

construction of two span continuous bridge results in 20% saving over the two span 

simply supported construction. The simple span design has 8 variables and 43 

degrees of difficulty while that for continuous span 7 variables and 38 degrees of 

difficulty. 

Fig. 2a Two Span Bridge with Simple Spans 

F'fi-----$---iJ:F 
I. L .1. L .. I 

Fig. 2b Two Span Continuous Bridge 

lI~J 1"d t 2t 2t I rt d 
" •• I == I b .1 

Fig. 2c Sectional View of Both the Bridge 
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Table 3 Optimum Design Variables for Two Span 
Continuous and Simply Supported Bridge 
(No. of hollow cores = 3) 

Variables Continuous Simply Supported 

d(m) 0.767 0.787 

l'(kN) 5208 7369 

e(m) at midspan 0.333 0.189 

rem) 0.283 0.283 

Obj. Fn ($) 63,879 79,734 

5. CONCLUSIONS 

This article illustrates how GP can be used in practical design problems of a 

structural system. The optimal designs of simply supported and continuous bridges 

were determined and the results were compared. 

Both the algorithms, GGP and SIGNOPT, are found to be reliable for the class of 

problems they can solve. 

For the number of independent variables and degree of difficulty encountered in 

these problems, the amount of CPU time required on an IBM 3033 computer or an 

equivalent, is considered reasonable. Wherever possible, the degree of difficulty 

and CPU time required can be reduced by leaving out constraints that are loose and 

manual checking can be performed after the optimum solution is obtained. 

In general practice, the use of GP model is expected to result in saving in the 

overall cost of the system over the conventional design model of trial and error. 

Savings in design time and cost could be significant if the model can be used for 

the design of a large number of similar structures with varying specifications as 

the optimization problem is impossible to be solved manually. 
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AN APPLICATION OF FUZZY LINEAR AND NONLINEAR 
PROGRAMMING TO STRUCTURAL OPTIMIZATION 

1. Introduction. 

Ken Koyama, Yuji Kamiya 
Dept. of Civil Engineering 

Shinshu University, Nagano, Japan 

General structural optimization in civil engineering has been done 
that only one objective function is to be maximized or minimized 
under constraints of crisp condition( 1). But many civil engineering 
structures have high public utilities or serviceabilities like 
highway or railway bridges, tunnel, airport, marine structure,etc.Then 
they are required multi level objectives, generally. Furthermore these 
objectives may have competitive or conflicting needs,utilities or 
serviceabilities,among themselves. Therefore,to satisfy the needs, 
the planning or design of types, locations or sizes of these 
structures should be required the multi objective decision making 
sense,essentially(2).In this sense,the multi objective optimization 
approach may be useful for the decision making of the problem. 

In this paper the multi objectives are taken that they have vague 
meaning, semantically( 3,4,5). For example, "as minimum as possible" or 
"if possible" means fuzzy or vague condition. The general crisp 
constraints and multi objectives are translated into fuzzy or vague 
constraints. Then the general structural optimization problems are 
changed to fuzzy optimization ones. 

Fuzzy optimization problems are solved by using linear or nonlinear 
programming techniques.Two types of problems are taken into 
consideration in this paper.One is non-fuzzy decision under fuzzy 
constraints and another is fuzzy decision under the same 
conditions.Allowable stress design of simple beam model and plastic 
design of portal frame are calculated for example of fuzzy 
optimization problem of structure in civil engineering. 

2.Membership Function and Formulation of Fuzzy Optimization. 

It is shown that the general optimization problems take the form 

minimize or maximize z=cTx (1) 

subject to ATX ~ b (2 ) 
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in which z denotes the objective function; and x is the design 
variables to be optimized;A,b,c are constants. 

The general optimization problm is translated into fuzzy 
optimization problem, if z or A,b,c or 
fuzziness,!,~,£,S or ~,respectivelY.In this 
modified as 

x has vagueness or 
case ,Eq.l and 2 are 

aia Z=£TX 1; zo* 

subject to px.t£ 

(3 ) 

( 4 ) 

in which J;, denotes semantical meaning of vaguness or fuzziness which 
constraints have; and zoo is an aim or goal which may be specified 
or taken apriori by human judgement. 

It is assumed that the fuzzy set of constraints and goals or 
objectives are expressed by Q and ~ ,and their membership functions 
are ,u.\l(x) and ,u,t(x),respectivelY.Then the grade of x which belong 
to the fuzzy decision set E is defined by 

,u .e(x)=lini {)J ~(x). )J ~(x) } (5) 

The problem to obtain the solution x' which satisfies the following 
equation 

lIax )J.e(x)= )J.e(x*) (6) 

is fomulated into fuzzy programming problem. It is 
schematically. 

shown in Fig. 1 , 

1·0 

J1 (X') 
Q 

o 
x 

X· 

Fig.l Fuzzy set 9.~ and decision B 

The membership function used in this paper is shown 
Fig. 2, the membership function of A has so called the 

and the spread d,and the expression is 

in Fig. 2. In 
mean value m 
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1.0-1 a. -m.1 Id. m. -d. ~ a. ~ II. +d • 
.u~.(a.)= (7) 

o except above 

h 

1~. ___ d_i __ ~ ___ d_i __ ~.1 OJ 

Fig.2 Membership Function 

Using this membership function,two type of fuzzy programming problems 
are solved. 

3.Non-fuzzy Decision Problem and Fuzzy Decision Problem 

3.1 Formulation of non-fuzzy decision problem 
Assume first that the constant A ,b and c are not crisp(i.e. fuzzy) 

but x is crisp variables,here. 
In Eq.3 and 4,the aim or objective and the constraints are expressed 

by the same formulae as 

Y=ATx ~ 0 
-~ -

in which 

Y.=b.xo+Aux.+Auxz+ .•••. +A.nxn .to. (i=l, •... ,k) - - - - -
In Eq.9 !:; means that y, is nearly positive,~ .. =~, and XI=1. 
Fuzzy parameter ~ is defined using m and d by 

(8 ) 

(9) 

(10 ) 

and the membership function of ~ which is linear combinations of ~ 
and x is given(4,5) as 

1.0-ly-xTIII/(dTx) ;x=O 

.uX(Y)= {1.0 ;x=O.y=O (11 ) 

o ;x=O.y=O 
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Follwing def ini'tiou' is 
positive(4,5). 

used to keep fuzzy set !. nearly 

I.to ¢) .uZ.(O)~l-b. XT •• ~O (12 ) 

According to Eq.12,Eq 9 is replaced by Eq.13,using Eq.11. 

(13) 

Finally,Eq.13 is reduced to 

(14) 

If h becomes larger, then the degree of X. !. 0 becomes greater. For 
example,if h=O.5 then the area belong to positive part becomes 87.5 
percent to the whole area of the membership function. Therefore, the 
problem is to find the solution h' and x' that maximize h(see 
Fig.2),subject to Eq.14.It is called fuzzy nonlinear programminig 
problem as non-fuzzy decision, here. Because the solution x of the 
problem is determined by crisp(non-fuzzy) value. 

3.2 Formulation of fuzzy decision problem 

In this section, the parameter A and c are taken to be crisp 
variables,but b is vague variable. Therefore ,how fuzzy the solution 
can be determined under fuzzy condition b is concerned about 
here. That is, the solution x is obtained by fuzzy set. 
In this case Eq.9 is replaced by 

(15 ) 

in whicb x1o=b.xo, {X.O.X, •.••.• x.} T= {i •• d.} T - - - - -It is assumed that the fuzzy set ~i has so called mean value X. and 
spread d •• 
Using the definition of Eq.11, Eq.15 is reduced to like as Eq.14. 

in which m.=(l,mn, •••• ,m •• P. 
Finally,subject to Eq.16, the fuzzy solution is obtained that 

objective z=zw.d. -- max. 
i 

(16) 

(17 ) 

in which w. denotes the weight to evaluate which !. sholud be 
determined as fuzzy or vague as posible. 

To obtain ~.= (x.,dol which makes z maximum is called fuzzy linear 
programming problem as fuzzy decision, here. 
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4.Applications 

4.1 A simple example of non-fuzzy decision 

A simple example of non-fuzzy decision is studied(4)to get the 
solution of the fuzzy optimization problem,using Eq.14. 

The constraints are 

!x.+~XzttO; !.=-~ +§x'+2Xz!O 
lx.+~Xzt~; !z= ~ -Zx.-!xztO 

IJh-'§h!:.4J; ¥,,= 4J-Uh +.§h!O 
-Zx.+~Xzi:y; r.= V +£h-~X2!:.O 

and the fuzzy parameter A are assumed as 

A. = {m. = ( -30 , 6 , 5 ) , d.= ( 6 ,2,1) } , A.= {m.= ( 45, -2 , 9) , d.= (8,2,3) } 
A.= {m.= ( 44, -11 , 5 ) , d. = ( 4 , 2 , 1 ) } , At= {m.= ( 12 , 2 , - 3) , d.= ( 4 , 1 , 2 ) } 
Then,Eq.18 is expressed by the form of Eq.14 as 

subject to; 
-30-6h + (6-2h)x. + (5 -h)Xz ~ 0 (a) 

45-Bh -(2+2h)x. -(9+3h)Xz~O (b) 
44-4h-(1l+2h)x. +(5 -h)Xz ~ 0 (e) 
12-4h +(2- h)x. -(3+2h)Xz ~ 0 (d) 

objective h ~ max. 

II') 
coo 
": 
C> 

J1 
1.0 

J1 
1.0 

0 

9.31 
(a) 

8.23 
(c) 

y 

26.7 

Y 

23.63 

J1 
1.0 

0 13.11 
(b) 

J1 

5~ 
-0.4 13.15 26.7 

(d) 

Fig.3 The memb •• rsip function of X 

(18) 

(19 ) 

y 

37.63 

Y 
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Eq.19 is a non-linear programming problem. Tanaka et.al(4) obtained 
the solution x= (XI,X,)= (4.50,2.62), assuming h=O. 5. But,accurate 
solution is obtained as x=(4.416,2.562) by using non-LP technic.In 
this paper SLP is used to solve non-LP problem. The degree of 
satisfuction that each constraints should be as nearly positive as 
possible is shown by their membership functions,in Fig.3. It is also 
shown that (a),(b) and (c) in Eq.19 are critical constraints in this 
example. 

4.2 Working stress design of simple beam 

The minimum weight design of simple beam is employed (6). In this 
example, the span length and the height of the beam and load condition 
are shown in Fig. 4. The working stress of this beam is assumed as 
127. 4Mpa( 1300kg/cm'). To find the width of the beam Xl and x, which 
makes the weight of the beam minimum is example of fuzzy decision 
under fuzzy constraints. The crisp constraints on size is given as 

x" ~ (3/4)x. 
X,+X2 ~ 14 

(20) 

(21) 

The stress limit constraints are added to Eq.20 and 21,then finally 

objective; z=x.+2x" ~ .ini. (22) 

subject to; x, ~ 7.21 (a) 
x" ~4.81 (b) 

3x , -4x 2 ~ 0 (c) (23) 

x.+ x2~14.0 (d) 

L/2 L/2 

I' 

b~ - ..c:: 
L/3 .j L/3 L/3 

I X2 

I. L=500cm 

Fig.4 Si.ple Bea. Hodel 

The solution of this problem under the crisp constraints is obtained 
as x=(xl,x,)=(8.0,6.0),z=20.0(6).If the value of z is allowed to 
increase from 20.0 to 24.0,26.0,28.0.It should be given by designer's 
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judgement which depends on the safety or utility or economical 
conditions. 

Acording to these z, let the aim objectives z. are assumed to be 
about 24.0,26.0,28.0,respectively.Then,the problem is trans rated into 
fuzzy optimization one and is shown as 

fuzzy constraints; 

x. tX10 (a) 

X2 ,£X20 (b) 

3x. -4Xz 2X"" (c) 

x.+ X2 !: x .. o (d) (24) 

X.+2X2 ~x"o (e) 

x. ~ x.w (0 
X2 .:!X70 (g) 

in wich Eq.24(e), (f), (g) are added to Eq.23,and they are the aim 
objective and upper limit of x=(x"x,),respectively. 

If x,.=(xto,d,.)=(7 .21,0. 721), x,.=(x20,d .. )=(4.81,0.481), 
x,.= ( x,., d .. ) = (0.0,0. 1 ) , x •• = (x .. , d •• ) = ( 14.0, 1.4) ,x,.= (x,., d,.) = (24.0,2 
.4) , x •• = (x •• , d •• ) = ( 15 . 0 , 1 . 5 ) ,x,.= (x,., d,.) = ( 12 . 0 , 1 . 2 ) is given, where 
the spread d •• is assumed to be 0 .1x.D , then, 

objective; z=d.+d2 --. max. 

subject to; -hd. ~7.21h 

X2 -hdz ~4.8lq. 

3x.-4x2+3hd.+4hd2 ~-O.lh 

x, +xz -hd. -hd2 ~ boh (25) 

X,+2h +hd.+2hdz ;;l; Z.Q2 0=1. 2.3) 

x. +hd. ;;l; 15Qz 

Xz +hd2 ;;l;12Q2 

in which q,=1.0+0.1h;q,=1.0-0.1h;b.=14.0 and z.=24.0,26.0,28.0 
The degree of satisfaction of fuzzy constraints is depends on the 

design level h.In this example h is assumed to be 0.5 and 0.6.The 
solutions of this example are shown in Table l(a) and (b) for h=0.5 
and 0.6,respectively. 

Table.1 fuzzy decision of simple beam example(unit=cm) 

(a) (b) 

h=0.5 h =0.6 

i x, x, d, d, x, x, d, d, 

1 8.483 6.845 1.255 0.0 8.535 6.774 0.788 0.0 

2 8.530 7.367 1. 919 0.476 8.551 7.256 0.925 0.686 

3 8.530 7.842 1. 919 1.426 8.551 7.726 0.925 1.469 
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To be expected,design should have large spread if z. is allowed to 
have large weight. But the mean values are not so different among the 
designs. 

4.3 Optimum plastic design of portal frame 

Optimum plastic design based on fuzzy decision problem is solved by 
the same way as 4.2. The portal frame employed here is shown in 
Fig.5. The crisp objective and constraints are given by(6) 

P 
I 

O·4P 
O·4P nn 
nn 
nn 

Fig.5 Load Conditions and Failure Mechanisms of Frame 

objective; G=2Kp, I+4KPzl --. .ini. 

subject to; 4Kp1 ~PI 

2Kp1+2KPz ~PI 

4Kpz ~O.4PI 

2Kp1+2Kpz ~ O.8PI 
4Kp1+2Kpz ~ 1. 2PI 
2Kp1+2Kpz ~O.4PI 

4Kpz ~O.8PI 

2Kp1+4Kpz ~ 1. 2PI 

(26) 

The solution is obtained by Mp =(Mp.,Mp,)= (O.3PI,O.2PI) and 
G=1.4Pl'(6) under crisp condition. From this result,if the aim 
objective is settled to be G.=1.6PI',and furthermore, the upper limits 
for Mp., Mp, which comes from engineering considerations is added to 
Eq.26, and also if the fuzziness of Mp and PI is expressed by the 
fuzzy parameter 

(27) 
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Then,the constraints and objective are 

objective; z=dxr"d'z -'IIaJI_ 

subject to; hp1 -4bd1 ii:;q 
2.p.+2.Pz-2hd.-2hdz ~ q 
hp.+2.Pz-4bd.-2hdz ~ 1. 2q 

hpz -4hdz ii:;O.8q 
2.p.+4.Pz-2bd.-4hdz ;;n .. 2q 
2.p.+hPz+2hd.+4hdz :il1. 6(l' .. O-O.lb) P.1 

.P. + hd. ~O.5-0.1b 

.Pz + hdz~O.5-0.1h 

in which q=pp1+0.1hp P1 ' 

(28) 

Three constraints are,though,excluded from Eq.26 by the engineering 
jud,gement.To obtain the solution, linear programming problem is 
solved by setting h=0.6,then we can get 
(mp.,d.,mp.,d.)= (0.323,0.008,0.212,0.0) P.1. 

In this example.,.d., which represents the fuzziness of plastic moment 
Hp2,becomes O.It shows that Hp. must have crisp value if design level 
h is required relatively high(h=0.6 means that the degree of fuzzy 
constraints to be positive is 92 percent satisfactory). 

5.Conclusions 

Non-fuzzy decision problem under fuzzy constraints and fuzzy 
decision problem under same enviroment are studied through 
examples.ln fuzzy decision problem, the judgement of the desgin 
level,which is expressed by its membership functions,is required 
based on h.Design variables are determined by the mean and its spread 
which represents fuzziness. 

In non-fuzzy decision problem, non linear programing technique is 
needed to get the solution. 

Concludingly,more complex problem of structures can not be 
available, now. Because if both the constant A and variable x are 
fuzzy,then the membership function of their linear combination ~ is 
not defined yet,in this paper.lt makes the application of this 
problem to more complicated structural optimization problems 
difficult. 

And also the choice of membership function depends on greatly the 
kind of problems and subjectives of designers. 
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ON THE CALIBRATION OF ARMA PROCESSES FOR SIMULATION 

S. Krenk & J. Clausen 
Department of Structural Engineering 
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DK-2800 Lyngby, Denmark 

ABSTRACT 

Auto-Regressive Moving-Average processes have found increased 
application in recent years in connection with simulation of 
stochastic loads on structures. Computational efficiency and 
limitations on available time for simulation in connection with tests 
require the number of coefficients in the ARMA process to be small. 
thereby stressing the need for efficient calibration. The most 
convenient calibration scheme makes use of the covariance function 
through the Yule-Walker equations. However. for narrow band. 
non-rational spectral densities. such as the Pierson-Moskowitz and 
the JONSWAP spectra for wave elevation. difficulties may be 
encountered. Some analytical remedies have been proposed in the 
literature specifically for the Pierson-Moskowitz spectrum. In this 
paper the difficulty is attributed to the use of a calibration time 
interval of insufficient length in connection with the non-rational 
form of the spectrum. The problem is solved by extending the 
calibration interval in connection with a least squares fit. 
Calculations suggest that structural resonance contributions to the 
spectrum are most efficiently incorporated via a separately 
calibrated filter. 

INTRODUCTION 

Within the field of structural engineering simulation of 

stochastic load processes such as wind. waves and earthquakes has 

tradi tionally been based on some version or other of the Fourier 

transform. The process is then represented by a finite number of sine 

functions. and the stochastic aspect is reduced to the selection of 

amplitudes and phases. These processes are discrete in the frequency 

domain and continuous in time. All frequency components contribute at 

any given time. and the amount of computation in each time step 

therefore grows rapidly wi th the required spectral resolution. This 
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is partly 

algorithm. 

compensated 

bu t then 

for 

the 

by use of 

full time 

the Fast Fourier 

history must be 

Transform 

calculated 

simultaneously. In recent years sequential simulation algorithms have 

been introduced in the form of Moving-Average. Auto-Regressive and 

the combined Auto-Regressive Moving-Average process. These processes 

are discrete in time and continuous in the frequency domain. The 

general form is 

Here 

X + n 

• . Xn _ 2 • 

f .. .n 

N 
! 

k=1 
a k Xn _k 

X •• 
n 

is 

is a sequence 

M 
! bk f n - k { 1 } 

k=O 

the process to be simulated. and .. f n - 2 • 

of independent random pulses. most often 

taken t~ be normal variables. The sequential simulation method 

corresponds to passing a white noise process through a discrete 

filter. and available methods of analysis for digital filters can be 

used to describe the properties of the simulated sequence. see e.g. 

Oppenheim & Schafer {1975}. In the analysis of offshore structures 

the spatial load distribution must also be considered. The dispersive 

nature of the waves favours the frequency domain. but sequential 

methods can be used in connection with time convolution as shown by 

Samii & Vandiver {1984}. 

X 
n 

fj 
X 

n 
plus 

The moving-average {MA} process corresponds to N=O whereby 

is a linear combination of M values of the white noise process 

The auto-regressive {AR} process corresponds to M=O. whereby 

is generated from a linear combination of N previous values 

a single independent random variable. These two types of 

processes have widely different correlation properties. While the MA 

process has a finite correlation length determined by the length of 

the filter. the AR 'p~o~ess is correlated over any finite time 

separation. Auto-regressive processes are used in spectral estimation 

by the maximum entropy method - see e.g. Holm & Hovem {1979} - and 

they have also been prop~sed for load simulation. Spanos {1983} and 

Lin & Hartt {1984}. However. typical wave load spectra are nearly 

zero over an interval of low 'f1'eq~encies. and it is difficult to 

obtain a uniformly good fit with an AR process of low order. The 

limitations of the individual MA and the AR processes are to a great 

extent removed by the combination into an ARMA process. Furthermore 

the ARMA process is particularly suited for analysis of random 

vibration of linear systems. as it can be shown that an ARMA process 
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with N=M+l=2n is an exact representation of the discretely sampled 

response of an n degree of freedom linear structure to white noise 

input. see e.g. Gersch & Liu (1976). In spite of the versatility of 

the ARMA process problems have been encountered in connection wi th 

typical offshore wave load spectra based on the Pierson-Moskowi tz 

format. Spanos (1983) and Spanos & Mignolet (1986). A partial. but 

not fully satisfactory. solution was found by replacing the 

exponential function in the Pierson-Moskowitz spectrum with its 

9-term Taylor expansion. Cleary this type of approach suffers from 

the limitation that a simple analytical form of the spectral density 

must be known and expanded explicitly into a rational function. In 

the following the procedure for calibrating an ARMA process to fit a 

given spectrum is outlined. The importance of the time interval used 

in the calibration procedure is identified. and the success of 

overdetermination via a least squares fit is demonstrated. 

Calculations indicate 

spec t rum are mos t 

calibrated filter. 

that structural response 

efficiently incorporated 

SPECTRUM AND Z-TRANSFORM 

contributions to the 

via a separately 

It is customary to characterize the spectral properties of time 

series such as (1) by the z-transform. defined as 

X(z) 
_c» 

X 
n 

-n z (2) 

z is a complex variable. and the value on the unit circle is closely 

related to the sampling period T and the frequency f • 

z i6 e 6 = T '" 

For a discretely sampled process 

211" T f (3) 

Xn=X(nT) the symmetric frequency 

interval is bounded by the Nyquist frequency 

The transfer function of a system is the ratio between output 

and some standardized input. In terms of the z-transform the transfer 
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H(z) 
N 

+ }; 
k=l 

-k 
z 

-k z 
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(4) 

For white noise input of unit variance the spectral density of the 

output is 

SARMA(W) (5) 

The normalizing factor 2v is needed to account for the use of angular 

frequency. while the sampling period normalizes the white noise to 

unit intensity per unit time. It is seen that the AR and MA processes 

correspond to special forms of the transfer function (4) in which the 

numerator and denominator are unity. respectively. Each of these 

speCial forms impose limitations on the spectra that can be 

represented accurately. 

The transfer function (4) is very useful for establishing the 

qualitative spectral properties of ARMA processes. It also leads to 

an explicit expression for the coefficients a k for the output of a 

linear second order system with n degrees of freedom. with 

uncoupled modes. The impulse response function of such a system is of 

the form 

n 
h(t) }; + (6) 

j=l 

where an asterisk indicates the complex conjugate and 

(7) 

is the complex. damped eigenfrequency of mode j with damping ratio 

rj Aj are constants depending on the participation of the modes. 

By matching the discrete output of a process of the form (1) wi th 

that from the continuous system at times T. 2T •.. etc. the transfer 

function is seen to be of the form 
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co 

H(z) T }; h(nT) -n z 
n=O 

n 
{ 

AJ A* 
} T }; + J (8) 

j=1 iO.T -1 -iO~T -1 e J z e J z 

Matching this expression with the denominator of (4) gives the 

following polynomial relation 

2n z + 
2n-l z 

(9) 

This relation uniquely determines the coefficients and these 

coefficients are independient of the participation factors Aj 

Strictly speaking the discrete system should not be matched to the 

impulse response function h(nT) 

value over the sampling interval 

itself but rather to an average 

in order not to violate the 

stationarity of the continuous process. However. the averaged impulse 

response function is also of the form (6) and independence of the 

coefficients makes the relation (9) exact in its present form. 

The coefficients b k can now be determined in two ways; either 

by use of the suitably averaged impulse response function in (6) or 

by constructing a set of equations directly from the original 

equation (1). The first procedure is straightforward but tedious. The 

second procedure has some bearing on the following. and is therefore 

briefly indicated. 

Multiplication of (1) with Xn _ j and f n - l gives the following 

equations for the covariances 

N M 
}; a k Rk _ j }; b k Ck _ j 

k=O k=O 
(10) 

N 2 
}; a k C l - k b l of 

k=O 
(11 ) 
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where O'~ is the variance of the random pulses. and the following 

notation has been used for the covariances 

E( X(n) X(n+j) (12) 

E( fen) X(n+j) ) (l3) 

The variable Xn is independent of any future pulses f n + j and 

therefore C_j=O for j=1.2.... If the coefficients a k are 

known. the equations (11) can be solved recursively for C I in terms 

of the coefficients b j . 

0.1 •...• M (14) 

Substitution of from (14) into (10) gives a set of quadratic 

equations in the coefficients b l . To cal ibrate a high-order ARMA 

process in this way would be rather complicated due to the nonlinear 

form of the latter part of the procedure. but for a second order 

equation corresponding to a single degree of freedom the method is 

quite feasible. Gersch & Liu (1976). 

EXTENDED YULE-WALKER EQUATIONS 

In the case of a general spectrum the coefficients a k are not 

known. Nonetheless the equations (10) and (11) remain valid and can 

be used to determine the coefficients and efficiently. The 

key prob I em is tha t genera lly the cross covariances are 

unknown. As suggested by Gersch & Liu (1976) the cross covariances 

can be determined approximately by rearranging the original ARMA 

process into the form of an equivalent AR process. 

+ (I5) 

In principle the number of terms N is now infinite. but in practice 

good approximations may be obtained with systems of a size well 
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wht'hin practical computation capability. The folowing examples 

indicate a magnitude of about 40 to SO to be suitable. Multiplication 

of (IS) with Xn _ j gives the so-called Yule-Walker equations 

j 1.2.3 .... (16) 

These equations are of Toeplitz type .and can be effectively solved 

recursively by the Levinson algorithm. see e.g. Press et al. (1986). 

The equations do not depend on any common facto.r in the covariances 

R j The intensity of the AR process is determined from the 

expectation of the square of the equation (IS). When the equations 

(16) are used to reduce the double sum. the resulting expression for 

the coefficient bO is 

+ (17) 

Due to the large size of N and a tendency of the equations 

(15) to develop instablities. the AR process (14) is generally not 

suitable for simulation. A drastic improvement with respect to filter 

order and stability is obtained by rearranging the process into the 

ARMA format. This can be done either in the time domain by use of the 

equations for the covariances as proposed by Gersch & Liu (1976) or 

in the frequency domain by matching the power series expansions of 

the transfer functions as proposed by Spanos & Mignolet (1986). The 

following concentrates on the time domain procedure and illustrates 

some simple precautions that are necessary. when this method is used 

on wave load spectra. 

The AR 

process (1). 

process (IS) is a rearrangement of the original ARMA 

and the cross covariances CI for both processes can 

therefore be evaluated from the coefficients 

approximation inherent in the truncated form of 

of (IS) with f n - l gives a set of equations of 

the recursive solution 

a k 

(IS). 

the 

accepting the 

Multiplication 

form (11) with 
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Co 
2 A 

(18) a f b O 

1 
Cl }; a j 

Cl _ j 1 1.2.3 •... (19) 
j=l 

When the cross covariances have been determined. the equations 

(10) and (II) for the coefficients 

can be rewritten in the form 

and of the ARMA process 

N M 
}; a k Rk _ j }; b k Ck _ j - Rj 

k=1 k=O 
(20) 

N 2 }; a k Cl - k b l a f - CI 
k=1 

(21) 

These equations are in the form of a set of extended Yule-Walker 

equa t ions f or the vec tor 

problem of determining these coefficients is solved in principle. 

However. the choice of the specific equations to be used sti 11 

require some attention. In the papers by Gersch & Liu (1976) and 

Spanos & Mignolet (1986) and in the vector process case considered by 

Samaras et al. (1985 ) the equations were selected with smallest 

possible index. i. e. j=0.1 •...• N-1 and 1=0.1 •... M • or with minor 

variations with respect to the first equation index and the parameter 

b As demonstrated in the next section this choice is not o 
satisfactory for narrow band spectra of non-rational form. 

OVERDETERMINATION AND LEAST SQUARES 

In the calibration of an ARMA process to fit a given spectrum it 

is often of interest to obtain the shortest possible filter to 

minimize computation time and storage requirements of the algorithm. 

This. on the other hand. leads to a small number of equations in the 

system (20}-(21). For narrow band processes these equations may 

furthermore concentrate on fitting the coefficients to the covariance 

functions within a fraction of a single period leading to a rather 

poor fit to the spectral density function. A simple solution to this 

problem I ies in overdetermination in connection wi th the use of a 
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least squares fit. The influence of the parameters N and the 

degree of overdetermination is discussed in connection with the wave 

spectrum of Pierson & Moskowitz (1964) in the parametric form 

proposed by ISSC (1964). In terms of the standard deviation ax and 

the mean zero-crossing period Tz the spectral density is 

(22) 

The covariance function corresponding to (22) is obtained numerically 

by application of the FFT algorithm. 

R 
1.0 

-TEORI 

.. MODEL 

0.5 

0.0 .' . .. 
-0.5 ] 

- LO +---rl--'I--TI--TI--rl ---'1 
0.0 0.5 '.0 '.5 2.0 2.5 5.0 

llTpeok 

A 

Fig.1. PM covariance fit of ARMA(4.4). N =40. 

The calibration problem is illustrated in Fig. 1. showing the 

covariance function R(t) ~f the Pierson-Moskowitz spectrum and the 

values R j from an ARMA( 4.4) process. 1'. e. an ARMA process wi th 

N=M=4 . The calibration has been done in the traditional way by use 

of the equations (20) and (21) with indices j=1 .... 4 and 1=1 .... 4. 

The time scale is normal ized wi th respect to the time T p 

corresponding to the peak frequency of the spectrum. and for 

illustration purposes the sampling period is T=0.1Tp ' In practice the 

sampling period would not be less than around T~0.05T in order to 
p 

obtain the peaks with sufficien't accuracy. It is seen that the 

equations (20) and (21) are limited to the first half period due to 

the short length of the filter. After the first period a substantial 

drift of the estimated values Rj is observed. 
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Fig.2. PM covariance fit of ARMA(6.6). N =50. 

The 

possible 

Overdetermination factor 3. 

parameter N 

causes for 

has 

the 

been chosen 

problem in 

ra ther large. 

Fig. 1. the 

leaving two 

undesirable 

concentration of the calibration points in the first half period and 

the possibility of a too low order of the ARMA filter. In order to 

obtain a fully satisfactory fit an ARMA(6.6) filter was found to be 

necessary. and the calibration was made by solving a three times 

overdetermined system of equations (20)-(21) by least squares. In 

this way the process is calibrated uniformly over nearly two full 

1.2 
• HODEL 

~ -TEORI 

1.0 

0.8 

0.6 

o.~ 

0.2 

0.0 
0 2 5 6 

Fig.3. PM spectrum fit of ARMA(6.6). N=50. 

No overdetermination. 
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.to MODEL 

-TEORI 

Fig.4. PM spectrum fit of ARMA{6.6}. N=50. 

Overdetermination factor 3. 

periods. The result is shown in Fig. 2. Increasing the filter order 

or the degree of overdetermination did not result in any improveent 

in the fit. 

While the covariance functions shown in Figs. 1 and 2 illustrate 

the calibration procedure. the quality of the resulting ARMA process 

is perhaps better evaluated in terms of the spectral density. Figures 

3 and 4 show the effect of overdetermination on the spectrum for the 

ARMA{6.6} filter. It is seen that overdetermination leads to a nearly 

perfect fit in the full frequency interval by properly adjusting the 

spectrum around the peak. This is precisely the effect illustrated in 

Figs. 1 and 2. The quality of the ARMA{6.6} filter shown in Fig 4 is 

fully comparable with the ARMA{7.7} reprsentation obtained by Spanos 

and Mignolet {1986} from a rational approximation of the 

Pierson-Moskowitz spectrum. For 20 samples per peak period it was 

found that the degree of overdetermination should be approximately 

doubled to give the same kind of accuracy. and thus it appears that 

the cal ibration time interval should not be less than around two 

periods for the present non-rational spectrum. This is a logical 

consequence of the tendency of the approximation to drift from the 

covariance function. if too few peaks are included in the calibrating 

equations. thereby explaining the potential problems with use of 

covariance calibration of low order filters without 

overdetermination. Figure 5 shows part of a simulated time history 

corresponding to the ARMA{6.6} filter from Fig. 4. 
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Fig.5. Time history for the ARMA(6.6) process in Fig. 4. 

In order to achieve the full accuracy of an ARMA process of 

given order by the present method the order N of the approximating 

AR process must be sufficiently large. A parametric study indicated 

that for the Pierson-Moskowitz spectrum a value of 

insufficient. leading to errors near the peak of 

N=30 was clearly 

the spectrum. The 

values N=40 and N=50 gave nearly identical. and fu lly 

satisfactory. results. For a rational spectrum corresponding to a 

harmonic oscillator a value of N=20 was found to be fully 

satisfactory. An example of a minimal representation of a simple 

harmonic oscillator with damping ratio 

process is shown in Fig. 6. 

L2 

LO 

0.8 

0.6 

0.4 

0.2 

r=O.l 

.. HODEL 

-TEORI 

O.O~----r-~-r----~---T----~---' 
o 2 5 6 

by an ARMA(2.2) 

Fig.6. Harmonic oscillator and ARMA(2.2). damping r=O.l 
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In the simulation of stress histories for offshore structures it 

is not sufficient to consider unimodal spectra. Structural resonance 

may give an additional amplification of the spectrum corresponding to 

the harmonic oscillator. see e.g. Wirsching & Light (1980). 

o. t2 

o. to 

0.06 

0.06 

O.O~ 

0.02 

0.00 
0 2 

MODEL 

-TEORI 

Fig.7. Pierson-Moskowitz spectrum with resonance. 

ARMA(6.6}. N=50. Overdetermination factor 5. 

0.
t21 
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0.06 
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0.0' 
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-TEORI 

Fig.8. Pierson-Moskowitz spectrum with resonance. 
A 

ARMA(lO.lO}. N=50. Overdetermination factor 5. 
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(23) 

The representation of this spectrum by an ARMA(2.2) process was 

illustrated in Fig. 6. The special form of this spectrum leads to the 

minimum order of the filter. The parame ter s and 

can be determined analytically from the eigenfrequency Wo and the 

damping ratio ( but as indicated in Fig. 6 direct application of 

the equations (20) and (21) gives excellent results. A process with 

the combined spectrum 

S(W) (24) 

can be calibrated directly or by convolution of the ARMA coefficients 

for each of the two factors. Figures 7 and 8 show results from direct 

calibration in the case of wO=2.0wp and (=0.1 Figure 7 

illustrates the effect of a too low order of the ARMA filter. showing 

up in the form of a poor fit around the peak of the Pierson-Moskowitz 

spectrum. while the resonant part is well represented. In Fig. 8 the 

filter order is more than sufficient. but even so the f.it is not 

quite as good as in the calibration of the individual spectra with 

ARMA(6.6) and ARMA(2.2) processes. This suggests the advantage of 

calibrating the individual factors of the spectrum (24). and then 

either using a two-stage simulation algorithm or combining the 

coefficients by convolution. 

CONCLUSIONS 

The use of Auto-Regressive Moving-Average processes for 

simulation of structural load and response has been discussed. and 

potential problems in connection with covariance calibration of ARMA 

processes to non-rational. narrow band spectra has been linked to the 

length of the calibration time interval compared with the mean period 

of the process. Calculations indicate the need for at least two 

periods to be included in the calibration procedure. Appropriate 

extension of the calibration time interval by overdetermination and 

least squares solution of the equations lead to excellent resul ts. 

e.g. an ARMA(6.6) representation of the Pierson-Moskowitz spectrum. 
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ABSTRACT 

LEVEL FOUR OPTIMIZATION FOR STRUcrURAL GLASS DESIGN 

Niels C. Lind 
Institute for Risk Research 

University of Waterloo, Waterloo, ON, N2L 3G I, Canada 

A design standard for structural glass in the limit state design 

format is calibrated to a target level of reliability against windstorm 

damage. The selection of reliability level presents special problems 

because the structural response is geometrically nonlinear and because 

the strength is highly dependent on time, size, and loading history. 

selection of safety level so as to achieve a social and economic 

optimum is described. The optimum reliability index is determined as a 

function of known quantities and of the social and economic costs of 

failure. optimal ranges of applicability over cost for a family of 

importance factors are also determined. 

INTRODUCTION 

This paper describes the selection of the resistance factor and the 

importance factors for use in the limit states design of glass in 

buildings against wind loading. The selection is based on consideration 

of optimal investment level to minimize the total cost. 

Glass plate is gaining importance as a structural building element 

and as cladding of large buildings. There is a need to develop the 

structural design of glass plate elements into consensus standards 

conforming in philosophy to other codes and standards for structural 

design (CSA 1981) that prescribe limit states design formats based on 

structural reliability theory. 

Glass is different from all other common building materials. Window 

glass apparently loses about half the original strength or more after 
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20 years, depending on exposure and atmosphere (Abiassi,1981). The 

rectangular glass plate is one of the simplest structural forms, but 

the glass plate deflects in the order of ten times the thickness before 

failure, so that membrane stresses provide an important part of the 

load carrying capacity. The response is thus modelled as 

time-dependent, size-dependent and geometrically nonlinear. 

Safety margins for other materials may be based on experience; 

there is little experience with glass as a structural material. The 

appropriate safety level must be determined from first principles of 

risk and cost of safety, quite separately from the question of how such 

a safety level may be achieved. This paper describes considerations 

necessary to implement this philosophy in a practical design standard 

for structural glass. A more detailed account is given in a later paper 

(Lind 1987). The actual calibration of the standard so as to produce 

the safety level that is selected in this paper is quite another 

matter, to be described separately (Davenport and Lind, 1987). 

CODE OPTIMIZATION 

The process to develop a reliability-based structural design 

standard has two phases: formatting and calibration of the format 

(Madsen, Krenk and Lind (1986). The writing of the provisions of the 

standard, in which all reliability-related parameters are identified as 

variables, is called formatting. Calibration is the subsequent 

selection of appropriate values for these variables so as to approach 

the reliability objective (Ravindra and Lind 1983; Madsen et al. 1986). 

The format is given in the National Building Code of Canada (NBCC 

1985), which also specifies "the wind loading and the wind load factor, 

GO = 1.5 in the limit states design equation 

[1] 
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where Q is the specified wind load in NBCC (1985); uQ is the wind load 

factor; r is an importance factor that is applied to the loads and 

takes into account the consequences of failure; Rs is the calculated 

nominal required resistance based on the specified material properties 

and design formula; and, is a resistance factor applied to account for 

variability of material properties and uncertainty in the prediction of 

resistance. 

DESIGN OBJECTIVE 

A level 4 safety criterion aims for a reliability that is optimal 

in the socio-economic sense of a balanced allocation of resources 

invested to reduce risk. Design standards and design procedures are 

also characterized by level. The level follows from the safety criteria 

they employ. Level 2 is in practice the highest that can be specified 

at the present state of the art, because full distribution details are 

not available to a professionally acceptable extent for some of the 

variables, e.g. human error in design or workmanship. Levell is the 

highest level now attainable for glass design. 

Rational calibration of a standard involves the. selection of a 

target reliability for each limit state, and this must be done on a 

level that is higher than the format of the standard. Standards are 

intended to serve the common interest of society in respect of safety; 

all calibration is ultimately aimed to approach level 4 as far as 

practical. The economic consideratiohs given in the following lay a 

basis for level 4 balancing of incremental total social and monetary 

expected costs against incremental initial cost. They are formulated in 

level 2 terms, however, i.e.< expressed in terms of a generalized 

reliability index. 

THE HAZARDS 

The hazards to structural glass and window glass are human factors 
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and natural factors, singly or in combination. Human factors (e.g. 

wilful damage, errors during design, manufacture, workmanship, control 

or use) are perhaps the most cornmon hazards. Many provisions of a glass 

design standard aim to reduce the risk of these human hazards, but 

those provisions are outside the scope of this paper. 

The natural hazards to structural glass are mainly windstorms and 

severe thermal gradients. Bird collision damage is also common. 

Windstorms have two primary effects: dynamlc wind pressure and 

windborne missiles. The latter are important, but it is uneconomical 

to design glass against large missiles. It is better to rely on the 

minimum thickness required for safe handllng and for wind pressure 

incidentally to provide some safety against windborne missiles up to a 

certain size. Similarly, to design against tornado wind pressures is 

uneconomical. 

The design of the standard 

reliability-sensitive constant 

involves the determination of the 

• in Eq. 1. This constant is effective 

only in the control of the reliability against breakage due to the 

dynamic effects of wind pressure. Wind pressure is not the major cause 

of breakage of installed glass,but the need to control this type of 

breakage largely controls the material expenditure in glazing and 

curtain walls, and thus it is the most important factor to be optimized 

in design. It is not the absolute breakage rates, but the marginal 

costs of preventing breakage that matter. 

THE MATERIAL 

A detailed account of the mechanical behaviour of glass is 

unnecessary for the present purpose, but it is important to note that 

the strength of glass, unlike other building materials, decreases 

rapidly with time. Abiassi (1981) studied the influence of weathering, 

aging (and normal wear and tear) on glass taken from three buildings .in 

Texas and found that the strength was much reduced. In the case of 
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tension on the unweathered side the mean strength was reduced to 39 per 

cent of the original value. With tension on the weathered side - the 

case more commonly critical in design - the mean strength was reduced 

by a factor of 0.45. The relative dispersion of the strength, expressed 

by the coefficient of variation was not reduced with time in Abiassi's 

study. 

The strength also decreases with size. The strength of a glass plate 

of thickness h under pressure is approximately proportional to h l . 5 

instead of h 2 (Lind 1986). 

SELECTION OF DESIGN LIFE 

The design life of glass in a building is dictated by the design life 

of the building as a whole. It makes no sense to aim for replacement 

of the glass during the useful life of the building. On the other hand 

it doesn't make ~ense that the glass should outlast the rest of the 

building. The design life is therefore taken as equal to that of the 

building, which is assumed to be 50 years in the ordinary case. 

ECONOMICS OF DESIGN 

To determin~ the optimal value of the resistance factor " imagine 

that this parameter is varied to generate a family of design standards 

that are identical in all respects except for ,. A small decrease in 

the resistance factor , in Eq. 1 will cause an increase in the required 

resistance Rs and hence increase the required thickness. This will 

mostly leave the selected thicknesses unaffected, because thickness is 

generally rounded off upwards to the next standard thickness. However, 

for a few lights it will lead to a size larger, and will thus decrease 

the probability of failure, thereby decreasing the expected cost of 

failure ECF but increasing the initial cost ~f the glass, CI. The 

decrease in ECF is subject to diminishing returns, and when the optimum 

failure probability is reached, the present value of the decrement in 
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ECF is cancelled by the increment in CI . 

Fig. 1 gives a synopsis of this economic process. (1) Let the 

resIstance factor • receive an infinitesimal decrement q •. (2) This 

causes a similar relative increment qRs in the required resistance 

LSD Equation 

I#IRs· GQ Ws 

(2)~ 
RS - q 

6R(t) ----R (t) 

Load Distribution 

~ R=CIRs 

q • ~8 (3) 

(4) 

/3- /3( 8 ,VR .VS) 

Eq.A6 

6P (t) 
~'" -ksq8(averogel (9) 

6Cr 
- .qk kI (7) CI v 

Fig. 1 Influence of resistance factor, on total cost CT' 
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(3) This, in turn, causes an increase q~ in the mean resistance, and 

(4) an increase q8 qR/Q in the central safety factor 8 as a 

result. (5) Because of the size effect, the increment qRs gives a 

relative increment of only qk v in the required thickness, where kv 

is a constant that depends on the design formula, determined below. 

This translates directly into a relative increase of approximately 

qkv in the supplied thickness, as an average for a large number of 

lights, see Fig. 2. Material cost eM constitutes a fraction, s, of 

the cost Cr of installed glass. (7) This implies an increased 

initial cost of sqkvCr. 

m=---

Supply h 

.... j--O 
I 
I 

,....--& 
I 
I 
I 
I 

r--b 
I 

...-----6 

Demand density, before increment 
,after increment 

flO 
O~~~~~-~'O~~-~~~~---h 19 hi 

12345 6 B 9 

Demand 

Fig. 2 rnfluence of a change in required thickness on the dls-

tribution of h and on thickness supplied. 
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Reference is now made to Fig. 3 to calculate the expected cost of 

failure. The figure shows an event tree covering the 50 year design 

life, ba5ed on a one-year accounting cycle. The outcome each year i is 

either survival to the next year, i+l, or failure Fi, indicated by a 

rising or descending branch, respectively. The conditional probability 

of survival of year i+l, given survival to the beginning of year i, is 

denoted by Ri and of failure Fi' By following a path from the origin to 

any node, one calculates the probability of of the corresponding 

outcome as the product of such conditional probabilities for the 

branches of the path from the origin to the node. The present expected 

value of the cost of failure is the product of its present value and 

its probability. Let I denote the true annual rate of interest net of 

inflation; then the backward capitalization factor for one year is K = 

(1 + I)-I. Fig. 3 shows that the expected cost of failure is 

[ 21 

where Ci (i=1, ... ,50) is the cost of failure (i.e. cost of breakage due 

to wind pressure) occurring in year ii Pi is the probability of failure 

due to wind pressure during year i; Ri is the rate of survival of year 

of the glass for all hazards including wind, given survival of year 

2 
__ -'-_---L_ t 

49 50 
YEAR 

Fig. 3 Lifetime failure event tree with time scale. 
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i-1. Ci should take account of depreciation. However, the influence 

of this factor is negligible; glass failure during the 50th year is 

just about as serious as during the first year, and Ci is therefore 

replaced with the constant value CF. 

Note that Ri+Pi is less than unity because Ri includes all hazards; 

however, Ri is sufficiently close to 1 that it may be included in the 

factor K without noticeable error. Finally, introducing the equivalent 

lifetime failure probability, defined as 

50 

1 

makes it possible to rewrite Eg. 2 as 

8+q8 
8 

.... 
0 -u 
0 

LA.. 

>--cu -0 
(/) 

0 .... -c 
cu 

U 

0 

r.s 

o 
00 0 --cr--.-----.----.----.---.---.----. 

o 
o 

'--_---''--__ '--__ '''''--__ --'-__ ---ot 
0 

Time 
50yr 

Fig. 4 Influence of a change in , on lifetime failure probability. 
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The individual term in Eq. 3 is called the discounted breakage rate. 

Eq:3. 3 and 4 :3how that the equivalent ll£etime failure probability and 

the present value of the expected cost of failure are both linear 

combinations of the failure probabilities Pi' The change in the safety 

factor e translates into a change in the present value of the expected 

cost of failure. The steps are labeled (8),(9),and (10) in Fig. 1. 

(11) The optimality condition '(ECF + CI) = 0 gives the failure 

rate that is in balance against the cost of providing a lower rate (see 

Fig. 1). Fig. 4 shows the influence of a change in the safety factor on 

the expected cost of failure . The loading is taken as the maximum wind 

pressure during a storm, of which there are approximately 100 each 

year. The resistance deteriorates with time and is represented by the 

central safety factor e(t) = R(t)/S. The influence of an infinitesimal 

increase in I is a proportional increase in I(t). This, in turn, causes 

a proportional reduction ksqe in the probability of failure in each 

load application which varies from 6.95 qe to 4.75 ql when P(t) varies 

from 3.16 to 1.90. Thus, although the probability of failure may vary 

by a factor of 100 or more over a lifetime, the relative influence of a 

change in the resistance factor, on the probability of failure in all 

the load applications is fairly constant. The value 5.85 qe may be used 

as representative. 

It is convenient to introduce the failure cost ratio 

Substituting into Eq. 4 gives the optimum lifetime discounted 

failure probability. 

In the future Canadian and U.S. standards design will likely be 

governed by the "failure prediction method". Repeated computer 

design has shown that the required volume v of glass designed 

according to this method varies with the strength factor , 
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approximately as ,-.991. Hence, 

[ 6] -kv "I' 
with kv ; 0.991. The initial cost CI' similarly, depends on the 

volume of glass, giving 

[7] 

Depending on the type of construction kI may be as low as 0.1 or as 

high as 0.5; kI ; 0.25 is a reasonable point estimate. Finally, 

[ 8] 

in which kE lies between 4.75 and 6.95. 

By Eqs. 4,6,7 and 8 the total cost is minimum 

equivalent lifetime failure probability PFC takes the value 

when the 

Because of the uncertainty in kI the value of 9 at optimum could be 

anywhere in the range from 2.78 to 3.27. Inserting the values kv 

0.99, kI 0.25 and kE 5.85, and selecting PFC 0.00135 

corresponding to , 3.0 gives the result that PFC is optimum when the 

failure cost ratio r equals approximately 30 (31.0 to be exactl. 

For most applications of glass in buildings, the failure cost ratio 

r= CF/CI lies between roughly, 10 and 100. Taking the value 30 as 

representative gives the discounted lifetime reliability index ,oDL; 

3.0. Thus, for "normal" consequences of failure pOOL can be chosen as 

3.0. 
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IMPORTANCE FACTORS 

In practice it is convenient to use a constant value of the 

resistance factor, for all ordinary cases of glass in buildings. This 

means that the failure cost ratio r = CFICI must be sufficiently close 

Lo the value 30. If the actual r is less than 30 but the same value of 

, is used, the reliability will be greater than optimum and vice versa. 

The importance factor r in Eq. 1 is intended to reflect the 

consequences of failure in design by allowing a higher (resp. lower) 

value of the resistance factor, denoted by '/r, in cases when failure 

is of more (less) serious consequence. For a given value of the 

importance factor r it is possible to determine the range of rover 

which this factor should be used. Moreover, it is possible to determine 

an appropriate value of the importance factor for structures with 

serious failure consequences as well as the range of r for which thIs 

factor is applicable. 

Fig. Sa illustrates the situation. The required resistance is 

plotted along the abscissa according to an equidistant scale. Assume 

that r o is optimum for a given application, but that rs is specified 

instead. If rO<rs(the situation illustrated in Fig. Ga) then the light 

is overdesigned. Lind and Davenport (1972) have shown that there is a 

loss in the SUbstitution that plots as shown by the full curve in Fig. 

Sa. Overdesign is associated with higher values of r or lower values of 

,. The loss is significantly greater in the case of overdesign, 

consisting mainly of material waste, than underdesign with an 

exponential increase in expected loss of failure. It has been shown 

(Lind, 1977) that the curve becomes practically parabolic when mapped 

into a logarithmic scale (Fig. Sb). Moreover, the parameter of the 

parabola is invariant (its value in absolute terms is unimportant for 

the argument in the following). Thus, if there are three standardized 

values of r used in the standard, optimal at points 1,2 and 3 in Fig. 

5c, the expected loss curve will be as shown if each is used over the 
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inle~vals indicated. 

Suppose now that it has been decided to use three fixed values of 

the importance factor, viz. fl' 1.00, and f2' Suppose, furthermore, 

that the values of fl .and f2 are to be determined such that the maximum 

expected loss in discretization is minimized over a given interval 

(fmin' f max )' Then - see Fig. 5d and refer to Lind (1977) for details -

this interval must be divided into six equal ratios, which gives 

I\,,~ ~I~ ( b) 

{n y 
lnyo fnys 

I \ 
I (c) 

~ 
I I 

\ / \/ 

" / ~ IA --<'f1'h.... I .fny 
tnYmin 2 3 lnymox 

(d) 

Fig. 5 Optimization of a catalog of importance factors. 
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[10] 

A reasonable value is '1 = 0.80 (used in NBCC(1985»; thi6 give6 '2 

=1.25, 'min = 0.72 and 'max = 1.40. It can be shown that '1 corresponds 

to P1 = 2.5 and failure cost ratio r1 = 7, while '2 corresponds to P2 = 

3.5 and r2 =170 approximately. 

CALIBRATION 

The results of this paper permit the code parameters • and , to 

be determined for glass, given all other parameters in Eq. 1. The 

resistance factor follows directly from PDL and the statistics of the 

basic random variables, see Madsen et al.(1986). 

Importance factors'l 0.8 and'2 = 1.25 are an optimal pair 

appropriate, respectively, when the ratio r of the cost of failure to 

the initial cost lies in the interval [4,15] and [70,420]. 

CONCLUSIONS 

The structural design of glass in buildings should ensure that the 

reliability of the glass over a specified design lifetime, assumed here 

to be dictated by the overall design life of the building (50 years) 

should be uniform, controlled, and predictable. 

The reliability of glass in buildings, expressed in terms of a 

reliability index, has an optimal value that depends only on the 

failure cost ratio r and the dispersion ~f the basic random variables. 

The failure cost ratio is somewhat difficult to determine, but its 

influence on the optimal reliability index is not large. The optimal 

target value of the reliabi.lity index was determined to equal 3.0 for 

ordinary applications of structural glass in buildings. 

Applications that call for values of the safety margins higher or 

lower than ordinary buildings occur frequently (e.g. agricultural and 

hospital buildings, respectively). An importance factor may be used to 
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take care of such situations. There' will be a waste associated with 

importance factors that are too low as well as too high. Importance 

factors 0.8 and 1.25 minimize the absolute maximum value of this waste 

for situations of low (r 4 to 15) and high (r= 70 to 420) 

consequences of failure, respectively. 
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Abstract 

This paper is concerned with the extension and application of 

a multiplication factor method to the identification of dominant 

failure modes in structural systems. First, the multiplication factor 

method proposed for a simple limit state function consisting of two 

basic variables, i.e., a resistance and a load, is extended to 

estimate the failure probabilities of the general cases where the 

resistance and the load effect are expressed as linear combinations of 

basic random variables. Second, the proposed method is compared 

through numerical examples with the advanced first-order second-moment 

method, and its effectiveness is verified. Third, the mUltiplication 

factor method is implemented to the automatic selection of dominant 

failure modes in structural systems by using the branch-and-bound 

method. Finally, the validity of the proposed procedure is 

demonstrated by identifying the dominant failure modes which include 

the non-normal basic variables. 

Key Words: Reliability Engineering, Non-normal Basic Variables, 

Multiplication Factor Method, Reliability Assessment, Dominant Failure 

Modes, Branch-and-bound Method 

1. Introduction 

Many studies have been done on the identification of dominant 

failure modes in structural systems which have linear safety 

with normal basic random variables [1-16]. In reality, the 

margins 

safety 

margins are non-linear, e.g., when interaction effect of bending 

moment and shearing force on yielding condition is considered 
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[9,10,14]. Resistances and loads which are taken as basic variables 

follow in many cases non-normal distributions. Nevertheless, there are 

few studies reported for the structures where non-linear safety 

margins and non-normal basic variables are included [8-10]. 

This paper proposes an approach to identify dominant failure 

modes in structural systems which have linear safety margins with non

normal basic random variables. To incorporate the non-normality of the 

basic variables, a transformation employed in an advanced first

order second-moment (AFOSM) method and an approximation of the basic 

variable at an appropriate fractile point are applied. The accuracies 

and computation times are compared between the proposed method and 

typical AFOSM algorithms. Finally, the proposed approximation method 

is implemented in the branch-and-bound method to identify the dominant 

failure modes of the structural systems. Further, numerical examples 

are provided to discuss the validity of the proposed method. 

2. Linear Ld.mit State Function with Non-normal Basic Variables 

A linear limit state function is assumed to be expressed as 

follows 
n+m 

Z = g (X) = E 
i=l (1) 

where X=( Xl' X2 , ..• , Xn+m) is a basic variable vector. 

The basic variables Xi (i=1,2, ... ,n+m) are assumed to be independent 

and the following standard normalization is performed: 

/ uXi ) = 

) / aX· ) 
~ 

F i (Xi ) 

== f i (Xi ) 

(2 ) 

X· 
where Fi(xi)=f_!fi(t)dt is the probability distribution function of Xi. 

The normalization parame~€rs ~Xi' aXi are given by 

Then, the limit state function is transformed into 
n+m 

Z=h (U) =1: 
i-l 

(3 ) 

(4 ) 
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Eq. (4) becomes a non-linear function of the normalized random 

variables. Consequently, the S-point is to be searched. Many methods 

have been proposed for searching the design point. Typical methods are 

Rackwitz-Fiessler algorithm and the method using an optimization 

method. The methods give us the accurate S-values. However, they need 

many iterations to find the design point and thus they are time

consuming. This is not a desirable aspect when they are used to select 

the dominant failure modes because in that case very many safety 

margins are generated and failure probabilities are evaluated. 

Considering this, an approximation method called" multiplication 

factor method" [MFM, 14) was proposed which assumes the design point 

based on heuristics. The basic idea and its extension are given in 

the following section. 

3. Multiplication Factor Method 

consider a simple limit state function 

Z = R s (5 ) 

In the multiplication factor method [14), the design point is assumed 

to be at an appropriate fractile points of the resistance and load, 

i.e., r*=~R-oROR and s*=~s+osos, where oR and Os are taken for example 

to be 3.0, and ~(.) and 0(.) are the mean and standard deviation of 

(.). Then, the non-normal basic variables Rand S are normalized at 

the assumed S-point. 

This concept is extended to a general case, where the resistance 

and load actions are expressed as linear combinations of non-normal 

basic variables: 

n+m 
+ ~ aj 

j=n+1 
(6 ) 

In Eq.(6), the terms with positive coefficients are aggregated in the 

the first term, i.e., ai>O (i=l,2, ... ,n) and those with negative 

coefficients in the second term, i.e., ai<O (i=n+l, •• , ,n+m). This 

means that the first term corresponds to the resistance and the second 

term to the load. Consequently, they are expressed as 

R 
n 

=~ ai Xi' i-1 
s 

n+m 
=-~ a X j-n+1 j j 

(7 ) 
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The means and variances of R and 5 are calculated as 

n n+m 

["R 
=~ a i JJ. i • JJ.s =-~ a JJ. j 
i=1 j a n+1 j 

(8 ) 
n n+m 

a 2 =~ a· 2 O'i2 • a 2 = ~ a 2 a 2 
R i=1 ~ S j=n+1 j j 

where ~k and ok are the mean and standard deviation of Xk . 

The design points r* and s* of the aggregated resistance and load 

actions are assumed to be given in the same way as in the simple 

case, i. e. , 

(9 ) 

Eq. (9) is satisf ied if the design points xi * (i=l, 2, ..• , n) and 

Xj* (j=n+l, ... ,n+m) of the componental resistances and loads are 

taken to be 

( * (i=1,2,··· ,n) Xi = JJ. i - a R • Gi 

* + a R • O'j (j=n+l,··· ,n+m) Xj = JJ.j 
(10 ) 

where n 

rR 

= 6R • O'R / (~ a i O'i ) 
i=1 

m 

as = 6s • as / (-j~n+1aj O'j ) (11 ) 

Then, the non-normal basic variables are normalized at the assumed 

design points, i.e., Eq.(lO). The resulting S-value is given by 

n+m 

= 
+ ~ a. JJ. X 

j=n+1 J j 

(12 ) 

where 

The failure probability is evaluated by 

Pf = 4> (- (J ) (13 ) 
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4. Comparison between MFM and AFOSM 

The accuracies and computation times are compared among the MFM 

and two AFOSM algorithms, i.e., multiplier method [17] and Rackwitz

Fiessler method [18]. The failure modes and their limit state 

functions are given in Fig. 1 and Table 1. The numbers in the rows 

(a), (b) and (c) correspond to the results of the three limit state 

functions. The columns indicate those corresponding to the different 

combinations of distribution for the resistances and loads. The first 

number in the bracket of IPD shows the type of distribution for the 

resistances, and the second shows that for the loads. The numbers 

indicate 1: normal distribution, 2: log-normal distribution, 3: 

weibull distribution, and 4: Gumbel distribution. It is observed that 

the two AFOSM methods give almost the same values and the results of 

the multiplication factor method are fairly accurate. The computation 

times are one or two order of magnitude smaller in case of the MFM. 

5. Identification of Dominant Failure Modes 

The multiplication factor method extended in the previous section 

is applied to identify dominant failure modes of structural systems 

when basic variables are non-normally distributed. The safety margins 

are generated, considering only the effect of bending moment on 

plasticity condition of the sections [3,14]. The branch-and-bound 

method combined with the heuristic method is applied to select the 

dominant failure paths, where the one-dimensional branching is adopted 

[6,14]. 

5.1 One-bay two-storied frame structure 

Consider a frame structure shown in Fig. 2. The numerical data 

are listed in Table 2. The coefficients of variation for the 

resistances and loads are 0.05 and 0.30, respectively. The types of 

distribution are log-normal for the resistances and Gumbel for the 

loads. The selected failure modes and their failure probabilities are 
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given in Table 3. The numbers of the selected failure paths are shown 

in the brackets. The total computation time is 185.8 sec by using ACOS 

850 at the Computer Center, University of Osaka Prefecture. The 

failure probabilities evaluated by the AFOSM using the multiplier 

method and their computation times are listed in the table. 

It is noticed that although the numerical values of the failure 

probabilities are slightly different between the MFM and the AFOSM, 

the relative order of the failure probabilities are almost the same. 

This is a desirable aspect of the MFM to be used for selecting the 

dominant failure modes because in that case only the ordering of the 

failure modes is important and the accurate values of the failure 

probabilities may be evaluated afterwards by using the more advanced 

method. It is also noted that the computation time is very short when 

the MFM is used. 

5.2 Asymmetric two-bay two-storied structure 

Consider a structural system shown in Fig. 3. The numerical data 

are listed in Table 4. The types of distribution are Weibull for the 

resistances and Gumbel for the loads. The selected dominant failure 

modes and their failure probabilities are given in Table 5, where the 

failure probabilities evaluated by the AFOSM and their computation 

times are also given. The similar conclusion is drawn in this example 

as stated in the previous example. 

6. Conclusions 

(1) The multiplication factor method (MFM) has been extended to 

evaluate the failure probabilities when the limit state 

functions are expressed as linear combinations of non-normal 

basic variables. 

(2) The MFM has been compared through numerical examples with the 

two AFOSM algorithms, i.e., Rackwitz-Fi~ssler algorithm and 

that by using a mUltiplier method. It is concluded that the 

MFM is fairly good in its accuracies and computationally 

efficient. Another important aspect of the MFM is that the 
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relative order of the failure probabilities of the different 

failure modes does not change although the magnitudes are 

sometimes different from those of the AFOSM. 

(3) The MFM has been successfully applied 

failure modes of the structural 

to identify the dominant 

systems when the basic 

variables are non-normally distributed. 
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(a) 'fYr I 1 
Lz 

T 
Ll h 

1]2 
1. (b) 

14 8]7 
/10 

jf-t +1-Jj H 

h - 1 - 5.0 m, iii - 101.0 kNm 

(i- 1.2 •••.• H, Ll 

Lz - 50.0 kN. Lz.L3-L4 -40.0 kN (a) 10 

Fig. 1 Failure modes and numerical data 

Table 1 Comparison between MFM and AFOSM 

FaitUN prababitity P, 
IPO(I,1 ) .. ethod IPO(3,1) IPO(1,4) IPO[3,4] 

-2 0.9371_10-2 0.8462_10~2 A~SH ... thod 0.1951-101 
(NwltipU.r ... tloDd) (0.168.10 )' (0.110_101) (0.317_10 , 

(a) • 0.1916_10-2 AFOSH method 0.1951_10-2 0.9371_10-2 0.8462_10-2 
(0.781_10- 3, (R-F .. ethod) (0.118_101, (0.980_100 , (0.588_10°, 

FOSH 
0.1765.10-2 0.9371.10-2 0.7279_10-2 .. ethod Muttiptiaation 

faotor .. ethod (0.l05.10-1, (0.916.10- 2, (0.376.10-1, 

MOSH method O.7664-1Oi1O 0.5189_10~4 -4 0.4280-101 
(NwltipH ... motloDd) (0.154·10 , (0.817-10 , (0.361dO , 

(bl 0.5236_10:;0 AFOSN method O. 7664.10~10 0.5190.10-4 0.4280_10-4 
(0.640xlO , (R-F method) (0.199.10 , (0.177_101, (0.874_100 , 

FOSM 
0.7297-10-10 0.9819-10-5 0.6527-10- 5 m"thod MuHiptiaation 

faotor method (0.455.10- 1, (0.909.10- 2, (0.523_10- 1, 

AFOSH method 0.2883-10-6 0.9657-10-4 0.7737_10-4 
(NwUipU ... motloDd) (0.148_101, (0. 324x101, (0.HOd02, 

(el 0.2568_10-6 AFOSH method 0.2883-10- 6 0.9658-10-4 0.7737-10-4 
(0.687_10- 3, (R- F ... thod) (0.264x101, (0.985xl01, (0.352d01) 

FOSH 
0.2542-10-6 0.4142-10-4 0.2800-10-4 method Multiplication 

faotor ... thod (0.453_10-1 , (0.992_10- 2 , (0.530_10- 1, 

• Limit state function I Z I CVR /CVL - 0.15/0.30 
. i J 

(a) B.am m.cha" .... : Z - RZ + 2R3 + R, - tL, 

(bl Sid. S!Jall meaha"ism : Z - RZ + RZ + R, + RS + R1 + R, + RZO + Rll - hLZ 
(c) Combi ... d m.ahanism : Z - RZ + 2R3 + 2R, + RS + R1 + R, + RZO + Rll - hLZ - iLZ 

• The fi9ura in parenthesia d .. iCJn&t .. cOIIIput&tion tim. (aec). 
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LJ ~ 
Table 2 Numerical data of 

Ll 5 -... (6) 7 

4 

L 3 2 __ 13 
L4+ 

lS 

2 (14) 

B 

9 f 
h 

16 
10 + 
11 

h 

Ll - 20.0 kN 

La - 10.0 kN 

LJ - 30.0 kN 

L4 - 30.0 kN 

h - 6.0 11\ 

.. - 5.0 11\ 

1, 2 
3, 4 
9, 10 

11, 12 

5, 6 
7, 8 

13, 14 
15, 16 

one-bay two-storied frame 

erooas s .. otional 
area 2 

Api-Ai m 

3.60.,0.3 

4.40.,0. 3 

Moment of 
inerotia 4 

Ii m 

2.58.,0. 5 

3.70.,0.5 

Mean lIalus 
of roefBN1ICB 
st!:.ength 

Ri kNm 

76.1 

99.S 

Young's modulus E - 210 GPa 

Fig. 2 One-bay two-storied frame Mean lIalu. of yield stroBes ayi - 276 MPA 

Co,.,..lation coeff· PLiLj - 0.0 PRkRl - 0.0 

Table 3 Selected failure modes and their failure probabilities 
(one-bay two-storied frame) 

• _________________ Y_-_'_._0,_c_-_0_.0_,_CVR/CVLj - 0.05/0.30, lPOr2,4) 

Fail ..... p,.obability 

Pfq" 
II P _ p[Z Ipqi. 0] 

fq rpq_ 

No. Hultip lication AFOSH method • Failure mode , Tho failure of tho elemont 
fao~,. method ··(Off·line tUn. (a.e) I end 18 governed aimply by the bendin'i 

---------------~--------------~----------- ~nt. 
l' (1,4,9,12,13,16) 0.1182.,0. ' (27)* 0.,489.,0. ' (0.88)·· 

2 (1,5,9,12,13,16) 0.7499.,0.2 [13] 0.98,9.,0.2 (1.00) 

3 (1,4,8,12,13,16) 0.7499>10.2 [22] 0.9819.10.2 (1.00) 

(1,2,11,12) 0.590,.,0.2 (63] 0.7500.10. 2 (1.62) 

(1,4,9,12,15,16) 0.5542.,0.2 [36] 0.7513.10.2 (2.14) 

6 (1,7,9,12,13,16) 0.5511.10.2 [47] 0.7492.10.2 (2.11) 

(1,5,8,12,13,16) 0.4634.,0.2 [14] 0.6467.,0.2 (1.17) 

8 (1,2,3,4,9,12,16) 0.4146xl0·2 [9] 0.5906"0.2 (1.23) 

9 (1,4,9,10,11,12,13) 0.4,46.,0.2 [4] 0.5906.,0.2 (1.24) 

10 (1,5,9,12,15,16) 0.345,.,0.2 [22] 0.4977.,0.2 (2.45) 

11 (1,4,8,12,15,16) 0.345,.,0.2 (16] 0.4977.,0.2 (2.45) 

12 (1,7,9,12,15,16) 0.2696.,0.2 [49] 0.3822.,0. 2 (2.64) 

13 (1,2,3,4,8,12,16) 0.2482.,0.2 [2] 0.3886.,0.2 (1. 21) 

14 (1,4,8,10,11,12,13) 0.2482.,0.2 [9] 0.3886.,0.2 (1.20) 

15 (1,5,9,10,11,12,13) 0.2482.,0.2 [4] 0.3886.,0. 2 (1.20) 

16 (1,7,8,12,13,16) 0.209&.10.2 [13] 0.3292.,0.2 (2.28) 

17 (1,5,8,12,15.16) 0.2098.,0.2 (16] 0.3292.,0.2 (2.28) 

18 (1,2,3,7,9,12,16) 0.1861xl0·2 (15] 0.3000.,0.2 (2.59) 

19 (1,7,9.10,11,12,13) 0.186,.,0.2 (19] 0.3000"0.2 (2.58) 

20 (4,7,9) 0.1612-10.2 [68] 0.1891.,0.2 (0.78) 

21 (1,5,8,10,11.12,13) 0.1447010.2 (9] 0.2556.,0.2 (1.23) 

Computation tUn. (aee) 185.8$ t AFOSH (35.3) 
ACOS 850 

• Criterion of structural failure 1. baled on sin9ul.rity of 
red.uce4 total structure atiffn ..... trbl:. 

• The fiqure 1n brackets d.llqnat.a the number of .elected 
rail\,lre _od ••. 

S The element end which ha ••• rety factor qre.ter than S.O 
1. dilcarded. 

$$ Branchin9 operation 11 b •• tId on one-dimenlion.l branchin9. 

RARR 
F.lF.lRR 
F.JB88 
BBBB 
BElF.J8 
Heuristic operation. 

I • (1 I p(Z/pl. 0] •• ,.P(Z,.(P·lll. OJ) 
p Pi p - - p.-

I • (1 I -1 r (p) > 12 ) 
P Pz pl· 

Th. n\Dber of branching. fra. on. failure 
auqo 18 ll.altad to 13" 
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Table 4 Numerical data of 
asymmetric two-bay two-storied frame 

Cress sectional 
arsa 2 

Api-Ai rD 

Homsnt of 
inflrcw 4 

Ii m 

Mean valu., 
of rsfer.ncB 
.t!:6ngth 

Ri kNra L4l L5 , 

q (10) II t L2 ---;- 17 (18) 21 
15 1. 2 

h 

1 16 22 1 
n? 71'7 71 

3. 4 
4.60.10. 3 3.36.10. 5 13. 14 95.0 

15. 16 
21. 22 

~t+t +t-l<--t-+l 5. 6 4.80.10.3 6.96.10.5 122.0 7. 8 

II = 31.0 kN I4 = 140.0 kN 9. 10 6.80.10.3 13.82.10.5 204.0 11. 12 

I2 = 62.0 kN L5 = 112.0 kN 

I3 = 89.0 kN 

17. 18 5.40.10.3 8.54.10.5 163.0 19. 20 

Fig. 3 Asymmetric two-bay 
two-storied frame 

Young'. "",dul". E - 210 GPa 

Table 5 

Mean I14l ... of wi.t.d .t,.... Gil": - 276 HPa 

COl'Nlation co.f!. PLi.Lj - 0.0 PRkRl - 0.0 

Selected failure modes and their failure probabilities 
(asymmetric two-bay two-storied frame) 

y - 1.0. tiC 0.0. CVR/CVLj - 0.05/0.30. IPO(3.4] Fh 
MF method AFOSM method 1 F.h 

F.h 
F.h F.1-1 

Failure mods 
No. 

1@ (4.7.13) 
2 (5.7.13) 
3 (4.7.8) 
4 (17.19.21 ) 
5 (5.7.8) 
6 (2.3.11.12) 

(17 .19.20) 
8 (9.11.12) 
9 (3.7.13.14) 
10 (2.7.11.12.13.14) 
11 (1.3.11.12.15.16. 

Failure 
pl'obabi li ty 

Pfq 

0.2935.10.1 (15]" 
0.1990.10.1 [13] 
0.1990.10.1 [1 ] 
0.1891xl0·1 [19] 
0.1318.10.1 [1] 
0.9304.10.2 

0.8061.10.2 [25] 
0.7975.10.2 [260] 
0.6874.10.2 [4] 
0.4376.10.2 [91 ] 
0.4132.10.2 [51] 

Failul'e ··(01f-
probability line Fh 

Pf time (sec)) 
3 

0.3682.10.1 (4.51)" 
0.2403.10.1 (4.90) 
0.2403.10.1 (4.90) 
0.2291.10.1 (4.98) 
0.1564.10.1 (5.07) 
0.1103.10-1 (4.71) 
0.9687.10-2 (5.18) 
0.9589.10.2 (4.62) 
0.1084.10.1 (7.50) 
0.7288.10.2 (14.1) 
0.7409.10.2 (12.2) 

F,hF.h 
F.=h F,h 

21.22) 
12 (1.2.15.16.21.22) 0.4066.10.2 

13 (1.7.11.12.13.14. 0.3445.10.2 
15.16.21.22) 

[76] 
[13] 

0.6293.10.2 (9.71) 
0.5490.10.2 (17.6) FhEh 

Computation time (sec) 
ACOS 850 

734.7$ (100.0) 

Criterion of structural failure is based on singularity of reduced total 
structure stiffness matrix. 

• The figure in brackets designates the number of selected failure modes. 

The element end which has safety factor greater than 5.0 is discarded. 

$$ Branching operation is based on one-dimensional branching. 

@ Failure mode , The failure of the element end is governed simply by 
the bendinq moment. 

Eh 
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RELIABILITY ESTIMATES BY QUADRATIC 
APPROXIMATION OF THE LIMIT STATE SURFACE 

Arvid Naess 
Department of Civil Engineering 

The Norwegian Institute of Technology 
N·7034 Trondheim 

The limit state surface in normalized Gaussian space is approximated at the design 
point by a quadratic surface. For an approximation of this type, the calculation of 
the reliability amounts to determining the probability distribution of a quadratic 
form in Gaussian variables. Simple, closed-form expressions for the probability 
distributions of a specific type of quadratic forms in Gaussian variables is used 
to obtain reliability estimates for two classes of quadratic approximations to the 
limit state surface. 

INTRODUCTION. 

In this paper the problem of structural reliability is formulated in terms of a set 

of random parameters that are assumed to determine the state of a given structural 

facility. It is assumed that the parameter space can be divided into two disjoint 

sets separated by a surface. For the parameter values in one of these sets, the 

structure is assumed to be in an intact, unfailed condition. This set is called the 

safe set or the set of safe states. Similarly, the parameter values in the other 

set corresponds to'a condition of failure or damage, and the set is consequently 

called the failure set or the set of failed states. The surface separating the safe 

set and the failure set is called the limit state surface or the failure surface. 

The reliability of the structure is understood here to mean the probability that the 

state of the structure is safe, i.e. the vector of random parameters describing the 

system has a value belonging to the safe set. 

The difficulty of calculating the reliability in a particular case, depends very 

much on the geometry of the limit state surface. A practical calculation of the 
reliability often depends on replacing the original limit state surface with one of 
simpler geometry. This simplification is usually carried out after the problem has 
been transferred to a normalized Gaussian space, by a suitable transformation of the 

initial random parameters. In this paper we shall study reliability estimates 

obtained by replacing the given limit state surface by an approximate quadratic 

surface. 
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THE RELIABILITY PROBLEM. 

It is assumed here that the problem of structural reliability can be formulated in 

terms of a safety marqin or safety function of a set of random influencinq 
parameters. Specifically, let Xl' ... , Xn denote the set of influencinq para

meters. It is then assumed that a safety function q can be found so that q(~) 

q(X1, ... , Xn) expresses the state of the structural system under study. 
When q(!) > 0, the system is in a safe state, while the system fails for q(~) ( O. 

The states satisfyinq q(3) = 0 are called limit states, and the set of points in Rn 

(n-dimensional Euclidean space) where q(3) = 0 is called the limit state surface 

or the failure surface. 

Let Os denote the set of safe states. The reliability of the structure, Ps ' is 

then identified with the probability that the vector of influencinq parameters, !, 
belonqs to the safe set Os. Then 

p 
s 

The probability of failure, Pf' is defined by Pf 1 - Ps . If f! denotes the 

( 1 ) 

joint probability density function (jpdf) of the random vector ~, Ps can be expres

sed as 

p 
s 

(2) 

For the subsequent developments it is convenient to consider the random vector! to 

belonq to a normalized Gaussian space i.e. the components Xl' ... , Xn are inde
pendent N(O,l)-variables. This can be achieved by suitably transforminq the 

initial random vector, see e.q. reference [1]. In the followinq it is assumed that 

this transformation has been carried out, so that! denotes a vector in normalized 

Gaussian space. 

A direct calculation of the reliability Ps by usinq equation (2) now amounts to 

inteqratinq a multidimensional Gaussian density over the safe set O. The 
s 

boundary of Os' which equals the limit state surface, is therefore usually approx-

imated by simple surface qeometries to facilitate the estimation of the inteqral 

in equation (2). Since we are in a normalized Gaussian space, it is clear that the 
the point on the limit state surface with the shortest distance to the oriqin is of 

• • of particular interest. Let I denote this point.! will be referred to as the . . . 
desiqn point. The lenqth IlS 0, which equals the distance from the Orl.q~n to the 

desiqn point, is called the Hasofer - Lind reliability index, denoted here by p, 

i.e. p 
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QUADRATIC APPROXIMATION OF THE LIMIT STATE SURFACE. 

Assuming that the limit state surface g(3) = 0 is sufficiently smooth in the 
* vicinity of the design point! , a Taylor expansion of g(!) gives 

* T * 1 *T * 
g(~) g(~ ) t 9x (!-! ) t 2 (!-~) Gx(!-~) t .. 

T a * n where 2x denotes the vector (~g(! ))i=1 and Gx denotes the matrix 
1 

(3) 

a * n T 
(ax. ax. g(! ))i,j=1· The notation! indicates a column vector, ! its transposed. 

1 J 

The simplest approximation to the limit state surface is obtained by retaining the 

first two terms on the rhs of equation (3). This gives a hyperplane through the 

design point, and the resulting approximation is usually referred to as a first 

order reliability method (FORM). The FORM estimate of the reliability is clearly 

+(P), where + denotes the cdf of an N(O,1)-variable (only one design point is 

assumed) . 

In second order reliability methods (SORM), also the third term on the rhs of 

equation (3) is included. This complicates considerably the evaluation of the 

corresponding reliability, which is equivalent to establishing the probability 

distribution of a general non-homogeneous quadratic form in Gaussian variables. 

Since this is not available, the integral in equation (3) must be evaluated 

numerically for a general quadratic safe domain D. Several numerical methods have 
s 

been developed for this purpose. The one developed by Rice [2] is mentioned in 

particular. A procedure described by Deak [3] for estimating the probability 

content in regions of Gaussian space, has been further developed and applied to 

reliability problems by several authors, see for example references [4,5]. 

In this paper we shall investigate two particular quadratic approximations to the 

* limit state surface at the design point ~. To get a convenient representation of 
these approximations, the original coordinate system (X) is rotated into a new 

system (Y) so that the design point has the coordinates (P, 0, ... jO). The first 

approximation, called hyperparabolic, is then given by [6] 

-T -Y1 - P t tAt = 0 (4) 

The second approximation is called hyperellipsoidal, and is given by [6] 

(5) 
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T 

(Y2' ..• , Yn) By Here A and B are symmetric matrices of order n-1 and i 
another orthogonal transformation (rotation) leaving the 

coordinate system (Z) with coordinates z, = y" z2' 

Y1-axis fixed, a new 

z can be obtained so 
n 

that equations (4) and (5) take the form 

n 

- p + [ 
2 

0 z1 AjZj 
j=2 

and 
n 

2 
[ A.Z~ A1 (z1- li 1) + 

j=2 J J 

In equation (6) (respectively equation (7» the A.'S are the eigenvalues of A 
J 

(6) 

(7) 

(respectively B). For the approximation of equation (7), it is found that p = Ii,-

1/1A when p < Ii , while p = Ii + 1/1A when p > Ii. Having assumed that the , , " , 
design point has coordinates (P, 0, ... ,0), which lies on the positive part of 
the z, -axis, it is seen that if the original limit state surface is replaced by 

the quadratic surface given by equation (7) and if p > Ii,' then Ii,' O. 

T 
Let! = (Z" ... , Zn) denote a vector in normalized Gaussian space, and introduce 
the random variable U by 

U 
n 

Z1 + r 
j=2 

A. Z~ 
J J 

(8) 

The SORM estimate of the reliability corresponding to the hyperparabolic approxi

mation of the limit state surface at the design point is then given by Ps 
ProblU < PI = Fu(P), FU denotes the cdf of the random variable U. 

Similarly, a random variable V is introduced by 

V 
n 

A1(Z1 - li1)2 + [ 
j=2 

A. Z~ 
J J 

It then follows that the SORM estimate of the reliability associated with the 

hyperellipsoidal approximation of the limit state surface is obtained as P 

(9 ) 

s 
Prob(V> 1) = 1 - FV(1) if Ii, > p, and Ps= ProblV < 11 = FV(1) if Ii, < P(Ii, (0). 

Fv denotes the cdf of V. In the first case (Ii, > PI, the interior of the ellips
oid corresponds to the failure set, while in the second case (Ii, ( 0), the 
interior corresponds to the safe set. 

To calculate the reliability associated with the two classes of quadratic 

approximations to the limit state surface that have been discussed above, it is 
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necessary to determine the cdf Fu and FV. In the general case, these functions 

are not available as closed-form expressions. However, a very neat asymptotic 

formula for estimating the reliability of quadratic safe sets has been given by 

Breitung [1]. In the case of a single design point, it takes the form 

n -1/2 
Pf •• (-~) n (1-~ KJ.) , (~~-) 

j=2 
( 10) 

Here Kj , j=2, ... , n, are the main curvatures of the limit state surface at! 
In the hyperparabolic case, K.= 2A .. In the hyperellipsoidal case, K. = 

J J J 
~.IIX. Despite its simplicity, the Breitung formula seems to be reasonably 

J 1 

* 

accurate except for small P and when one of the factors P K.« 1.0) is close to 
J 

1.0. 

An alternative approach, which cannot compete with equation (10) in simplicity, 

but which has the advantage of providing exact solutions in a wide range of cases, 

has been described in reference [8]. There a class of special-case, closed-form 

expressions for the cdf of quadratic forms in normalized Gaussian variables is 

exploited to establish upper and lower bounds on the general Fu and FV. 

The upper and lower bounds coalesce in the case when the 

... , n, are pairwise equal. Specifically, assume that n 

eigenvalues A., j=2, 
J 

= 2N + 1 and v. 
J 

A = 
2 j 

A2j+1, j=1, N. Provided that none of the Vj are equal, which can be 

arranged in most practical situations by a slight change in numerical values if 

necessary, it can be shown that [8] 

Here 

N 1 1 
1 - FU(~)= .(-~) + [ sign(v J.) kJ. exp(- ~(P - --4-- » 

j=1 J Vj 

sign{v.) + 1 if 
J 

N v . 
k. =i~1 ( 1 - ....!) -1 

J i,j Vj 

v. 
J 

1 
+[sign(vJ.)(P - ~)] 

Vj 

) 0, - 1 if v. < o and 
J 

( 11) 

(12) 

In the general case equation (11) can be used to establish upper and lower bounds 
on the reliability. Assume that A2 > A3 > •••• ~ An and n = 2N + 1. The case n=2N 

is discussed in reference [8]. Let Vj = A2jt1 and ~j = A2j , j = 1, ... ,N, and 
N 2 N . 2 2 

introduce the random variables U1 [j=1 vjR j and u2 = [j=1 ~jRj' where Rj 
2 2 2. bl . th d h U d Z2j + Z2j+1 is a X -var1a e W1 2 degrees of free om. T en u1 < U < 2' an 

Fu (P) ) Fu{P) > Fu (PI, where Fu (P) and FU2 (P) are obtained by using equation 
(1') . 2 1 
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The hyperellipsoidal failure surface is more complicated to deal with than the 

hyperparabolic case. For the sake of simplicity, we shall here limit the 

discussion to two particular cases. The general case is analysed in 

reference [8]. Firstly, assume ~, > 0, which implies ~, > p, and Xj < 0 for 

each j=2, .. ,n. In the situation at hand here the quadratic surface given by 

equation (1) has two disconnected components, and only the component containing 

the design point is retained. In the instance of pairwise equal eigenvalues 
v.=x .=X. ,j = 1, ... ,N, it can be shown that [8] 

) 2) 2) +' 
~ 

+( -fa. + --'-) 
) ~, 

(13 ) 

In addition to the notation previously introduced, 

For 

a. 
) 

the second case, assume ~ 
1 

= 0, i.e. p = 1/fl., , 

( 14) 

X > X. > 0, j = 2, ... ,n. For , J 
pairwise equal eigenvalues v. = X 

2 j 
= X 

2 j I' 
j = 1, ... ,N, it can be shown that 

) + 
[8] (note that there are two design points, at + 1/f'A, ) 

* (1 ""( 2 ( 15) 

""(*(a ; x) = x-a r(a)-' ""(a; x) where ""(a; x) is the incomplete gamma function 
* and r(a) = ""(a; -) is the gamma function [9]. Values of ""( (1/2 ; -x) have been 

tabulated in reference [8]. 

In the case when the eigenvalues are not pairwise equal, a lower bound V, and an 

upper bound V2 to V are established in a manner entirely analogous to the hyper

parabolic case. The corresponding F (1) and F (1), satisfying F (1) Fv(1) 
V ~ ~ 

) FV (1), can then be calculated by u~ing equation (13). 
2 

INTERPOLATION PROCEDURES. 

In this section a short discussion is given on interpolation methods for 
estimating the reliability of quadratic safety regions by using the upper and 

lower bounds. The discussion here is based on the results of reference [10]. 

Two classes of interpolation procedures were investigated. The methods of the 

first class perform the interpolation on the parameter level, while the methods of 

the second class do the interpolation on the distribution function level. 
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Specifically, in the methods of the first class the random variable 

W = r. n ~. z~ 
) = 2 ) ) 

. ,. N 2 
is approxlmated by W = r. 1 El.R. where a. = a.(v., ~.) 

)= )) )))) 
El. (~ ., ~. ). 
.. ) 2) 2 )+1 

In the second class a parameter q is sought 50 that 

F I (1) = (1 - q) F (1) + q FI (1) gives a good approximation to F (1), I 
II 2 I 

u,v. 

General rules for an optimum choice of parameters in each particular case are 
difficult to establish. Of the methods belonging to the fir.st <r:iass that were 

test.ed ini Hally, the following was chosen: Assume ~1 L .... ) ~n > 0, and let 

1 ~. 
2 (~)a ; j = 1, ... ,N, 0 ( a < ". 

X2 j 
(16) 

It is seen that 0 < o.(a) '1/2. The parameters a. 
) ) 

introduced as follows 

a. 
) 

a . (a) 
) 

e . (~ ., ~. ) are now 
) 2) 2 ) +1 

The modification needed in case of negative ~. is quite obvious. From the 
) 

examples tested in reference [10], it seems that a = 0.5 is quite close to an 

overall optimum choice. 

( 17) 

Concerning methods of the second class, two procedures were investigated. One was 

the 'obvious' arithmetic mean, i.e. q = 0.5. The other method was quite involved, 

but in general it did not improve on the simple arithmetic mean. We shall 

therefore not elaborate any further on that method here. It is discussed in 

detail in reference [10]. 

NUMERICAL EXAMPLES. 

In the subsequent examples, it is convenient to give the failure probability 

Pf instead of Ps ' For this purpose, the following notation is introduced 

where X denotes any random variable. 

Example 1: Consider the following hyperparabolic failure surface 
2 2 2 2 

( 18) 

ZI + 0.14 z2 + 0.07 z3 = 3.5. Then p = 3.5 and U = ZI + 0.14 Z2 + 0.07 Z3' 

The appropriate bounding approximations are U1 = ZI + 0.07 R~ (R~ = z~ + Z~) and 

U2 ZI + 0.14 R~. The bounding failure probabilities are calculated from 
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equation (11) and it is found that Gu(P) = 4.61.10- 4 and Gu (P) = 12.68.10- 4 • 

The corresponding FORM estimate is +(l p) = 2.33.10- 4 . A num~rical integration has 

been carried out to determine Gu(P), giving Gu(P) = 8.0.10- 4 . Let Ga(P) denote the 

failure probability obtained by the interpolation method of the first type with 

a : 0.5. Similarly, let Gu(P) denote the arithmetic mean of GU (P) and Gu (P). It 
is found that Gij(P) : 8.60.10- 4 and Gu(P) = 8.65.10- 4 . Using the Breitung2formula 

(equation (10», it is found that GU (P) - 4.57.10- 4 , GU(P) - 23.07.10- 4 and 

GU (P) • 116.5.10- 4 . It is seen that the Breitung formula gives a very accurate 

es~imate of GU (P), which is a case with IIKj significantly less than 1.0. 

This does not hold in the other two cases, and the accuracy decreases notably. 

• - I 2 2 2 
Example 2: Assume for thlS example that V = 16 [(ZI - 8) - 0.9Z2 - 0.6Z 3), 

implying II : 4.0. The lower bound VI = 16- 1 [(ZI - 8)2 - 0.9R~), the upper bound 

V2 = 16- 1 [(ZI - 8)2 - 0.6R~). Using equation (13), the bounding failure 

probabilities are calculated: FV (1) 12.44.10- 5 and FV (1) = 7.20.10- 5 The 

corresponding FORM estimate is .1-p) 3.17.10- 5 . using2a notation similar to that 

in Example 1, it is found that Fv(1) 9.89.10- 5 and Fv(1) = 9.82·10- s . Equation 
-5 -5 _-5 (10) gives FV (1) - 31.7·10 ,FV(1) - 15.9·10 and FV (1) 7.93·10 . The 

accuracy of e4uation (10) is again satisfactory when tht 11K. is significantly 
) 

less than 1. 

-I 2 2 2 
Example 3: In this example assume that V = 16 [Z1 + 0.8Z2 + 0.4Z 3), implying 

-I 2 2 II = 4.0. The lower bound VI = 16 [Z1 + 0.4R1), the upper bound 

V2=16-I[Z~ + 0.8 R~). The corresponding failure probabilities are calculated from 

equation (15). It is found that GV(1)=1.10.10- 4 and Gv (1)=4.06.10- 4 . The FORM 

estimate is 2+(-11)=0.63.10- 4 • By nfimerical integration2 the failure probability is 

calculated to be G (1) = 2.3.10- 4 . Using the interpolation methods, we find 
V .. 

Gv(1) 2.12.10- 4 and GV(1) = 2.58.10- 4 . Equation (10) gives Gv (1) - 1.05.10- 4 , 

GV (1) - 1.82· 10- 4 and GV (1) - 3.15· 10- 4 • I 
2 

CONCLUDING REMARKS. 

It is assumed that the limit state surface in normalized Gaussian space can be 

approximated by a quadratic surface at the design point. For an approximation 
of this type, the calculation of the reliability amounts to determining the 
probability distribution of a quadratic form in Gaussian variables. In the 

general case, this is not available in closed form in terms of tabulated 

functions. In this paper we have studied two types of quadratic limit state 
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surfaces, the hyper parabolic and the hyperellipsoidal. It is shown that exact 

expressions for the reliability of a wide range of such limit state surfaces can 

be given. On the basis of these special case solutions, upper and lower bounds on 

the reliability in the general hyperparabolic or hyperellipsoidal case can be 
established. 

The existence of upper and lower reliability bounds is exploited as a basis 

for seeking interpolation methods for estimating the reliability. It is shown by 

examples that simple interpolation methods give accurate estimates of the 

reliability. An asymptotic formula for the reliability of quadratic safe sets has 

also been tested on the examples presented, and it is shown to give good estimates 

except in cases where parameters are close to critical values. 
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INTRODUCTION 

System reliability evaluation of frames for ultimate collapse by the kinematic 

approach requires the enumeration of the failure modes, calculation of the proba

bility of failure for each mode and then computation of the overall reliability by 

suitable aggregation [16]. Practical experience shows that even relatively simple 

frames have a very large number of failure modes. Identification, enumeration and 

description of all these modes is a difficult combinatorial problem. 

Failure modes can be generated by exhaustive enumeration, repeated elastic 

analysis and optimization. Exhaustive enumeration is not practical for most real

istic structures. Discrete elastic frame models lead to a system of simultaneous 

linear equations in terms of the variables of the problem. If the system has a 

solution (i.e., a failure model, it is unique. For generating the other modes, 

when the variables are randomly varying, the structural problem has to be solved 

repeatedly for different realizations of the variables. A large number of methods 

based on repeated elastic analysis have been proposed [see 17 for details]. These 

methods are computationally expensive and often depend on complex heuristic rules 

or trial and error procedures. Thus, theoretically at least, one cannot guarantee 

a successful termination in a finite time interval on a digital computer. 

It is necessary here to distinguish between the terms 'method,' 'procedure,' 

and 'algorithm.' A 'method' finds the solution to a problem, irrespective of wheth

er it can be solved by a computer or not. A 'procedure' has to be describable by a 

finite number of steps, be unique, take finite interval to perform each step and be 

closed, i.e., use information only from the previous steps. An 'algorithm' can be 

defined as a procedure that terminates in a finite number of steps on a digital 

computer. since the failure modes will most likely be solved by using a computer, 

an algorithm is necessary for implementation of any procedure. Different algor

ithmic procedures can then be rationally compared by evaluating their time and 

space complexity. 



www.manaraa.com

298 

At present, only the optimization procedures appear to have algorithmic possi

bilities that the other approaches lack. For example, partial satisfaction of 

structural constraints for redundant frames will generate a subspace in Rn and the 

final solution can be obtained by a suitable optimality criterion. The optimal 

solution of the model will give the same result (i.e., failure mode) as the solu

tion of simultaneous linear equations in the traditional methods. The power of the 

extremum methods, however, is that all the suboptimal solutions can also be easily 

obtained from the model, and these suboptimal solutions correspond to various ran

dom realizations of the variables, i.e., any suboptimal solution can become optimal 

for a particular realization of random variables. Thus, potentially, all the solu

tions (i.e., failure modes) of the structural problem for all possible combinations 

of random variables can be obtained directly by using powerful algorithmic pro-

cedures developed in the mathematical and computer science literature. The aim 

here, therefore, is to consider the algorithmic procedures based on optimization 

strategies for generating failure modes of building frames failing in the mechanism 

mode. 

REVIEW OF PREVIOUS APPROACHES 

Linear and nonlinear programming models (LP and NLP, respectively) have previ

ously been proposed for failure mode enumeration of rigid plastic frames [9,24). 

Two alternative NLP formulations were given by Ma [9), leading to constrained and 

unconstrained optimization problems. The failure modes were 'assumed' to cor-

respond to the local minima of the nonlinear objective function. Although this 

observation seems to be correct, the hypothesis has yet to be proven rigorously. 

The direct search method used for the solution missed several of the modes and gen

erated the modes in an arbitrary order depending upon the chosen starting points. 

Thus, the proposed NLP formulation cannot be useful without an efficient algorithm

ic procedure for the generation and ranking of modes. 

A static LP-based model was formulated by Rashedi and Moses [24). Approaches 

depending on sensitivity analysis and simulation were specified for the generation 

of the modes. Trial and error-based complex heuristic strategies and rules were 

proposed for this in terms of certain empirically defined parameters. However, the 

modes by these procedures are generated in an arbitrary order. Often, the same 

mode may be generated in various trials, and a large number of modes may be missed 

altogether. 

These previous optimization-based strategies for failure mode generation lack 

suitable and systematic algorithmic procedures for the solution of the models as 

formulated. Recently, some effort haR been made to develop algorithmic procedureR 
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based on LP. NLP. and multiobjective linear programming (MOLP) models 

[17.21.18.19]. and some of these results will be described here. 

EXTREMUM MODELS FOR RIGID PLASTIC FRAMES 

Proportional Loading -- It is well known that many problems of plastic ana

lysis of structures can be solved by extremum approaches [10]. For example. the 

problem of limit analysis of frames. in which plastic behavior is activated by a 

single stress resultant (such as flexure). may be formulated as an LP model for the 

case of proportionally applied loads. Structural models formulated from static and 

kinematic considerations have been shown to be a primal-dual pair in LP format 

[5.6.12]. Such LP models have been derived in the literature in many different 

forms. and a model based on the approach given in [2) is adopted here for subse

quent development. 

In this model. a plane frame with proportionally applied loads has been 

considered. Plastic hinges are assumed to form at a set of discrete locations 
th 

(j=l ••.•• J). and the plastic moment capacity at the j section is denoted by 

M Then. the primal-dual LP pair is given by [2], 
Pj 

KINEMATIC LP STATIC LP 

A Min A+ A = Max A 
J + 

Min [l: M (6, + 6, ») 
j=l Pj J J s.t. 

s.t. M 
+ 

1: t 6 , e, - e, 
J J k=l k kJ 

j=l •• , •• J k=l ••••• M 

M 
1: t e = 1 
k=l 

k k 

j=l., ••• J 
+ 

6, . 6, ~ 0 
J J 

in which the variables are 

section j. 
+ M, - moment at M, = M, - M, 

J J J J 

j. ej 6 
+ e = rotation at section - e, 

j j J 
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tk = a coefficient indicating the contribution o.f the kth 

elementary mode to collapse 

+ 
A , A collapse load factors for the kinematic and static LP's, 

respectively 

and the parameters are 

hinge rotation of elementary mechanism k at joint j 

external work associated with elementary mechanism k 

M= number of equations of equilibrium/number of elementary 

mechanisms 

+ 
member capacity at section j (Mp , and Mp , are capacities 

related to the two directions of Jrotation1 

A study of the geometric structure of the primal and dual models shows that 

the failure modes are given by the extreme points of the associated primal (ki

nematic) polytope (see Appendix for illustration) and the facets of the dual 

(static) polytope. Duality transformations of LP actually map extreme points of 

one model to the hyperplanes of the other and vice versa. Thus, the kinematic 

approach seems to be the natural one to follow for the generation of failure modes. 

One great advantage of the kinematic approach is the availability of an extensive 

mathematical literature and algorithms for extreme point enumeration of polytopes 

[11). Failure modes can, of course, be generated from the dual variables of the 

static LP (available from the reduced cost rows). However, the lack of algorithmic 

possibilities makes the approach difficult to implement, as demonstrated in (24). 

Multiparameter Loading Proportional loading indicates a system of concen-

trated loads, each of which is proportional to a parameter, A. However, the actual 

loading on the structures may not satisfy the restriction of proportional loading. 

It is necessary, in such cases, to consider the independent variation of load fac

tor parameters for the various loads acting on the frame. A static MOLP model has 

recently been formulated for the plastic collapse analysis of frames due to multi

parameter loading [18,19) as: 

T 
Max A Max °l,···,AQ} 

J Q 

s.t. E C M, - E D A = 0 
j=l kj J q=l 

kq q 

k=l, ••. ,M 
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j=l, ... ,J 

where (q=l, ••• ,Q) denotes Q independent load parameters and C and Dare 
kj kq 

constant coefficients. 

Unlike scalar optimization problems, the vector optimal solutions are not com-

pletely ordered. Therefore, one of the main distinguishing factors in the vector 

optimal problems is the absence of a unique "optimal" solution. The notion of an 

optimal solution is replaced by the concept of a noninferior solution (also 

referred to as a pareto-optimal, efficient or non-dominated solution). Two types 

of noninferiority, viz., strong and weak noninferiority are defined (18). It has 

been shown that weak noninferiority is relevant for the limit analysis (18) prob

lem, whereas design optimization problems are likely to seek strong noninferior 

solutions. 

The concept of noninferior solutions is well established (22), but only fairly 

recently have algorithms been developed for generating noninferior solutions. 

Chankong and Haimes (1) give a state of art review, and Stadler (25) has described 

applications in Mechanics. The special structure of MOLP problems has made it pos

sible to develop powerful theoretical and algorithmic results for direct generation 

of exact noninferior sets. Several simplex-based algorithms have been proposed 

[see 19 for details) for this purpose. 

The geometrical structure of the MOLP static model shows that it has two dif

ferent associated polytopes instead of just one, as in LP models. These polyhedral 

regions are defined by the feasible regions of the MOLP model in objective (load) 

space and decision (basic variable) space, respectively. The two polyhedral feasi

ble regions have frontiers made up of only polyhedral facets. It has been shown 

(19) that maximal facets of these polyhedra correspond to the failure modes of the 

structure and union of all maximal facets gives the global limit surface for the 

frame. 

Based on the foregoing, the static MOLP model seems to be naturally suited for 

generating the global limit hypersurface of frames. This, in turn, is useful for 

the evaluation of system reliability by the random variable approach (16). The 

direct procedure for failure mode generation, i.e., the kinematic MOLP model, has 

yet not been formulated. Thus, for multiparameter loading, if one wants the 

failure modes, they must be generated indirectly, i.e., from the reduced cost rowS 

of the static MOLP model. 
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ALGORITHMS FOR FAILURE MODE GENERATION 

Polytopes (and polyhedra) have been thoroughly studied by mathematicians 

[e.g.. 8]. In recent years. many algorithms have been proposed for generating 

their extreme points and facets. A survey of these methods. contrasting the main 

features and computational results for representative methods. is given by Matheiss 

and Rubin [11]. 

Proportional Loading -- In the context of the kinematic LP model. one is 

interested in enumerating the extreme points of the polytope. Algorithms for enu-

merating all extreme points of a polytope are divided into two classes: pivoting 

methods and non-pivoting methods. Some of the methods rank the vertices in the 

process of enumeration. but most generate the vertices in an arbitrary order. 

Since ordering of extreme points is very important for reliability analysis. only 

ranking algorithms are relevant. Three such algorithms have been proposed 

[3.13.14.15.23]. Among these three. the extreme point ranking algorithm of Murty 

was selected to generate the failure modes in ascending order of their collapse 

loads [17]. This algorithm has also been applied for the fixed charge bidding 

problem [13]. the travelling salesman problem [14]. and near optimality analysis 

[20]. 

the 

The algorithm ranks the extreme points of ~ ~ = b in nondecreasing order 

value of z(x). The method is based on a theorem which states that if ~l. 
of 
2 
~. 

y . y+l 
....• ~ are the 'y' best extreme p01nts. ~ will be an adjacent extreme point of 

one of the first 'y' points. The new point is distinct from the first y and minim

izes z(~) among all eligible points. 

The algorithm starts with a basic feasible solution corresponding to the 

optimal extreme point as the only extreme point in the enumerated list. It finds 

all the adjacent extreme points by bringing. one by one. the nonbasic variables 

into the basis to form a candidate list. The top ranked point in the candidate 

list is added to the list of enumerated extreme points and excluded from the candi-

date list. The candidate list is then revised by adding in appropriate order all 

the adjacent extreme points of the point just selected. The procedure is repeated 

until either a prespecified number of extreme points. n. is found or all the 

extreme points in ranked sequence whose objective value is less than a prespecified 

value a are obtained. A consequence of Murty's theorem is that if at each stage 

the candidate list contains more than n extreme points. only the best n entries are 

kept in the candidate list. discarding the rest. Similarly. for the case of a 

prespecified objective value. at each stage all the adjacent extreme points with an 

objective value greater than a can be discarded. If the polytope is degenerate. 

then all the basic feasible solutions corresponding to a given extreme point have 
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to be incorporated in the solution process. 

The size of the LP increases rapidly for larger structures. However, LP 

algorithms work efficiently in practice for even very large sized problems with 

thousands of variables and hundreds of constraints. Thus, the proposed LP-based 

procedure is likely to be a useful alternative for generating the failure modes of 

realistic structural frames. Detailed computational experience is not available so 

far, and this will be an important area for further research. Fortunately, struc

tural reliability problems do not require generation of all of the thousands of 

possible modes that a structure might have. Identifying around 50 modes in ranked 

order should give a reasonably accurate estimate of system reliability. 

Murty's algorithm considers only linear significance criteria, and this 

implies an assumption of perfect correlation among member plastic moment capacities 

in the polytope extreme point (PEP) model of [171. Although the order of mode gen

eration is not very sensitive [241 to correlation betwen component strengths (for 

coefficient of correlation < 0.3), the method needs to be extended to account for 

the actual correlation between members. Algorithms for extreme point enumeration 

of the polytope for independent and correlated member strengths are currently under 

investigation [211. Once the important modes are identified by this procedure, it 

is possible to use the associated load values to determine the orientation of an 

incremental load vector for each mode. A· general nonlinear structural frame ana

lysis can then be performed for each proportional load orientation thus defined. 

This will lead to refined modal loads based on the more comprehensive structural 

analysis. 

Multiparametric Loading -- The algorithms for MOLP problems are based on a 

systematic search for the nQninferior extreme points of the associated polytopes. 

Since not every extreme point is noninferior, it is necessary to determine the 

potential noninferiority of adjacent extreme points by an examination of the 

reduced cost matrices. Most of the adjacent extreme points are either eliminated 

in this process or are classified as noninferior. For the few remaining extreme 

points not directly falling in one of these categories, a small linear subproblem 

test is formulated, the solution of which indicates their category. The subproblem 

uses the reduced cost information of the current basis to search for a set of posi

tive weights to check the dominance of the new basis. 

As the noninferior extreme point set has been shown to be connected, a 

systematic procedure for storing and keeping track of the bases can be devised. 

Various multiobjective simplex algorithms primarily differ in the ways they gen

erate and store these noninferior extreme points. In the static MOLP model, the 

simplex tableaux corresponding to different noninferior extreme points will have 



www.manaraa.com

3M 

information about the failure modes in the reduced cost rows. Thus, the solution 

of the MOLP model automatically generates all the failure modes as shown in 

[18,19]. Ranking the failure modes will, of course, require additional information 

regarding probabilistic behavior of the random variables. The kinematic MOLP model 

has not been formulated in the literature so far, but it is likely to provide a 

direct method for failure mode enumeration under multiparameter loading. 

COMPLEXITY OF ALGORITHMS 

Traditionally, a common approach for the comparison of alternative methods for 

the solution of a given problem is based on empirical tests on sample problems. 

For example, Grimmelt and Schueller [7] recently compared different methods for 

determining the collapse failure probabilities of redundant structures by testing 

these on certain arbitrary problems. However, recent research in algorithm theory 

has provided theoretical criteria for the study of computation problems in terms of 

their time and space complexity. Dyer [4] has applied some of these ideas and 

results to the extreme point enumeration problem. From his results, it becomes 

clear that the problem of failure mode enumeration is NP-hard, and there is no 

polynomial time algorithm for its solution. There has been no such study regarding 

the complexity of MOLP algorithms, but these are certainly harder than ordinary 

LP-problems. 

CONCLUSIONS 

The problem of failure mode generation of frames is a complex problem. 

Optimization-based strategies seem to be the best procedures for algorithmic 

developments in this regard. However, significant computational resources will be 

required to solve even the most efficient algorithm because there are no known 

polynomial time algorithms to solve such problems. 

1. Chankong, V., 
Optimization: A 
Objectives, Y.Y. 
New York, 1985. 
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APPENDIX 

Polytopes are n-dimensional analogs of 2-D polygons. As the structural prob

lems mostly lead to irregular and degenerate polytopes in higher dimensional (>3) 

spaces, it is difficult to visualize the details of the problem. Therefore, a 

hypothetical example is shown here to illustrate the proposed approach. A regular 

polytope (Fig. 1) in a 3-D space is assumed to represent the feasible region of a 

kinematic LP model for a certain hypothetical structural problem. 



www.manaraa.com

300 

A 2-D (hyper)plane is shown to just touch the extreme point A of the polytope, 

which denotes the optimal solution, i.e., the structure will fail in mode A. It is 

conceivable that a variation in the slope of the hyperplane (by changing parameters 

in the equation of hyperplane) may lead it to touch another extreme point B. Then, 

the structure will fail due to failure mode B. For a certain slope of the hyper

plane, there is the possibility of it touching the edge AB, leading to simultaneous 

failure in modes A and B. Similarly, if the hyperplane coincides with the plane 

ABCD, there will be an occurrence of four simultaneous modes at failure (denoted by 

A,B,C and D). Thus, the failure mode in which the structure will actually fail is 

determined by the coefficients in the equation describing the hyperplane, i.e., its 

slope. 

Fig. 1. Illustration for failure mode enumeration of a hypothetical structural problem. 
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ABSTRACT 

RELIABILITY ANALYSIS OF HYSTERETIC MULTI-STOREY FRAMES 
UNDER RANDOM EXCITATION 

S. R. K. Nielsen, K. J. Merk, P. Thoft-Christensen 
University of Aalborg 

Sohngaardsholrnsvej 57, DK-9000 Aalborg, Denmark 

An analytical method for determining the response of a hysteretic structural system 

under random excitation including safety measures is presented. The formulation of 

the integrated dynamic system made up of the structural system, the safety measures 

and the loading process is expressed by the use of the ItO stochastic differential 

equations. By introducing an approximate non-Gaussian probability distribution with 

adjustable parameters for the response and using the statistical moment equation, 

obtained from using the ItO-formula to calibrate the parameter& the resulting pro

bability distribution is used to provide approximate response statistics. 

KEYWORDS 

Stochastic differential equation. Hysteretic structures. Non-Gaussian closure. Cu

mulative plastic deformation. 

1. INTRODUCTION 

Reliability of hysteretic structures may be studied based on stochastic differen

tial equations, [1-4]. In these formulations extra internal degrees-of-freedom are 

introduced, for which extra differential equations are formulated. These equations 

are virtual constitutive equations on incremental form. 

If the external excitations are modelled as filtered Gaussian white noise processes, 

the resulting equations may be formulated as a system of ItO-differential equations, 

[5-7]. Because the associated Fokker-Planck-Kolmogorov or backwards-Kolmogorov equa

tions can hardly be solved either analytically or numerically, one has concentrated 

on determining the time-dependent moments of the solution process. 

The differential equations for the moments of the solution process can be obtained 

in various ways, [6, 7]. The most natural way is to apply the ItO-formula to pro

ducts of increasing order of the involved stochastic variables and perform the ex

pectation. Alternatively one can start from the Fokker-Planck-Kolmogorov-equation 

in combination with the divergence theorem. This will result in an infinite hierar

chy of moment equations. 
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In applications these systems of differential equations mus.t be truncated at a cer

tain order. The main problem in doing this is that the moment equations generally 

involve expectations of all state variables, which can only be calculated if the 

full joint distribution of all state variables is known. Hence, the joint distribu

tions must be estimated from the joint moments calculated from the retained moment 

equations. This process is referred to as closure techniques in the literature, 

[6, 7]. 

If only the first and second order moments are retained, the resulting equations 

are easily shown to be identical to those obtained by the equivalent linearization 

method, [10-12], when this is based on a minimization of the expected value of the 

mean square error term between the right hand sides of the non-linear system diffe

rential equations and their equivalent linear representation. 

In the so-called Gaussian closure technique the above-mentioned expectations are 

calculated, assuming a joint normal distribution, for all.state variables with,expec

ted values and covariances as calculated from the process, [9]. When only first and 

second order moments are considere~ the covariance equations can be further reduced 

by application of the Price theorem, [10, 12]. In this case the Gaussian closure 

technique is consistent. because the equivalent linear system equations imply normal 

response processes. 

The response processes of strongly non-linear processes may differ significantly 

from normality and hence Gaussian closure schemes may lead to erroneous results. In 

these cases non-Gaussian schemes, b,ased on Gram-Charlier series, have been suggeste~ 

[7, 13]. The parameter in these series can only be estimated if the moment hierarchy 

is closed at higher than 2nd order, i.e. differential equations of the joint moments 

of the state vector beyond the mean value function and the covariance function have 

to be formulated. 

In general, the method of non-Gaussian closure consists of constructing a non-Gaus

sian probability distribution with adjustable parameters for the response and using 

statistical moment equations to obtain differential or algebraic equations for the 

unknown parameters. With calibrated parameters, the resulting probability distribu

tion is then used to obtain approximate response statistics. 

The aim of the present study is to form the basis of a non-Gaussian closure method 

for the integrated dynamic system made up of structural state variables" the loa

ding process and various safety measures, which are defined as random functions, 

which are non-decreasing with time at least with probability one. 

In the structural analysis geometrical linearity is assumed. The material behaviour 

is assumed to be linear elastic, ideal plastic. Constitutive equations are formulated 

for both beam elements with distributed plastic deformations within the elements a~ 

for yield hinge models, where the plastic deformations are restricted to the member 

end sections. 
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stochastic differential equations are formulated for the loading process and for the 

safety measure. As illustration a seismic excitation is considered, modelled as a 

Gaussian white noise filtered through a Kanai-Tajimifilter. The maximum value of the 

numerical value of the rotations of the beam element end sections encountered during 

the excitation time is selected as safety measure. 

The ltd differential equations for the vector process of all state variables in the 

integrated dynamic system are then formulated. Corresponding to a closure of the 

hierarchy of statistical moments at the second order level, the differential equa

tions of the mean and covariance function of the vector process are indicated. The 

appropriate approximations, necessary to reduce the calculation of the expectations 

in the said differQntial equations to beam element level are indicated, only invol

ving stochastic variables associated with a certain beam element. 

In case of yield hinge models an approximate probability densi tyfunctions for all 

state variables associated with a certain beam element is, indicated, which h~s a de

gree-of-freedom to represent a discrete p~obability mass corresponding to yielding 

at the member end sections. For other beam models the probability mass will be con

tinuously distributed. However, the probability density function will have dominant 

peaks close to the yield bending moment. The said probability density function for 

the yield hinge model is then also applied in this case. 

The relevance of the assumed probability density is demonstrated by extensive simu

lation studies for a 2-storey yield hinge frame. 

2. COMPATIBILITY RELATIONS 

L 

Figure 1: Definition of nodal and internal degrees of freedom. 

T 
The member end moments ~ = (Ml' M2) of a beam element is introduced as internal. 

degrees of freedom in the element. The end rotations from the element chord are 

termed ~eT = (81' 82). Assuming geometrical linearity corresponding to small deflec-
T 

tions, ~e are related to the nodal point deformations =:.e = (rl, ••• , r6) through the 
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compatibility eqllat:i,ons. 

~e ~ £e (1) 

~ 
1 

-1 0 
1 

0 1 ~ L L 
1 

0 0 
1 

1 (2) 
L L 

3. ANALYSIS OF BEAM ELEMENTS 

Constitutive equations will be derived for beam models with distributed plasticity 

as well for a yield hinge model with plastic deformations concentrated at the end 

sections. 

3.1 Distributed plasticity models. 

Z = :: 
o 

0) b) 

------~--~~~--"----~e ----7''----7----.L-----,-r----~ x = !5.. 
KO 

(xu. zu) 

Figure 2: Constitutive equations. a) Stress-strain curve for linear elastic-ideal 

plastic material. b) Non-dimensional moment-curvature curve for symmetric section 

of linear elastic-ideal plastic material. 

The following assumptions are applied 

1) Bernoullis hypothesis that plane sections remain plane during deformation 

2) The beam material is linear elastic-ideal plastic 

3) Normal forces have negligible influence on the load-bearing capacity. 

4) External loads are applied at system nodes, i.e. all elements are free of exter

nal loadings 

5) All sections are symmetrical 
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The last-mentioned assumption, which is not crucial, has been included to facilitate 

the calculations. 

In figure 2b Mo and KO represent the moment and curvature on the skeleton curve, 

corresponding to the elastic limit deformation. From the above assumptions the fol

lowing can be derived 

M = EI K 
000 

where E is the modulus of elasticity and 10 is the bending moment of inertia. 

(3) 

+ + 
(xu·, Zu ) and (Xu-, Zu-) represent the non-dimensional curvature K/Ko and moment 

MVMo at unloading from positive and negative moments respectively. 

Finally, Zy = My/Mo represent the non-dimensional bending moment capacity of the 

section. 

The constitutive equations on differential form may be written 

M 
t • 

EI({M}o,F;)K .. 
i({z}~,F;)X i I e: ]0, 1] (4) z = 

10 

where (3) is applied. {M}~ and {z}~ are sets of all previous M- and z-values during 

the interval [0, t], specifying the history dependence of I and i. I is the moment 

of inertia of all elastic fibres in the section. Hence .i({Z}~,F;) 1 corresponds 

to totally elastic deformations, whereas i({z}~,F;) = 0+ indicates plastic deforma

tions of all fibres in the section. F; = L is a non-dimensional coordinate, measured 

along the beam axis, see figure 1. 

It turns out that i({z}~,F;)on .the loading branch ABC in figure 2b only depends on the 

latest values of the non-dimensional moment at unloading Zu+ and the present value 

of ·Z. Similarly i ({z}~,F;) on branches CDE only depends on Zu and the present value 

of z. 

For a rectangular beam section the following result on differential form may be de

rived 

x branch AB 

(~Z+3 ) 3/2 x branch BC 
Z 2 Zu+-l 

(5) 

x branch CD 

(2%-3 ) 3/2 
2zu-+l ·x branch DE 
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zu(\~ll R 
-1.5 
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I 1:9 I 

E;:I 1 I 

H I I 
Time 

Figure 3. Realization of processes ~(t), Z +(t), Z -(t), itt). 
u u 

k1 
I H=l 

The non-dimensional moments at most recent unloading Z + and z are determined from 
u u 

the following differential equations. 

• + 
Z 

U 

z 
u 

[2H(Z-Z +)-1] max{H(z-z +), 
u u 

with initial conditions z + (0) 
u 

H(X)={l'X~O 
o , x < 0 

+ -
H(Zu -zu -2»)ZH(Z) 

+ - • • 
H(Zu -zu -2)jzH(-z) 

1, Zu (0) -1 . H(·) is given by 

(6) 

(7) 

Realizations of . z (t), zu+ (t) and zu- (t) are shown in figure 3. It is seen that Zu + 

remains constant at the most recent unloading value of z(t) at point c independent

ly of succeeding elastic re- and unloadings until unloading from the plastic branch 

g-h at point h. Similarly Zu-(t) remains constant at the most recent unloading value 

of z(t) at point d until the succeeding unloading from the plastic branch I-m at 

point m independently of preceeding elastic loading loops. 

- +-
The plastic branches g-h and I-m are defined by Zu - z = OAZu -.zu -2>0 and 

z.:..z + = OAZ +-.z --2>0, respectively. All elastic branches. are defined by z +-.z -2<0. 
u u u u u 

i ({ z) t,;) = i (z, .z +, z -, ;) for a rectangular section may then be written 
o u u 

i (z, + 
t' 
+ _ 3 + 2 z-3 l 

l+H(Z -z -2) [H(Z -2) «2z+3 )2 -l)+H(Z-Zu ) «"2Z-+1)2 -1)1 
u u u 2zu"'-1 u 

(a) 

where H(·) is defined by (7). The corresponding sample curve of i has also been 

shown in figure 3. 
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+ -In principle extra state variables ('~ , zu) must be introduced at all cross-sec-

tions of the beam. Introducing ~ = !o «1-~)Ml+~M2) into (6), the differential equa

tions at a given section, specified by ~, is obtained. In a discretized model only 

a finite number of sections is considered, between which (z +, z -) is linearly inter
u u 

polated. The discrete numbers of state variables thus obtained for the said member 

are assembled in element state vectors' z + , z -u,e -u,e 

K in (4) is related to the rate of the end section moments ~T (Ml , M2) through 

K 
1 (I-E;) HI +E;M2 

EIo i(Z,~+,zu-,E;) 
(9) 

The rate of the end section rotations !eT (61' 82) can now be calculated from K, 

e.g. from the conjugate beam theory. The following relationship between !e and ~ 

for a certain member is obtained. 

(10) 

(11) 

+ 1 (1-E;)2 
dll(~' ~u,e' ~~e) l i(~, .!u:e l .!.u:e' 

~)dE; (l1a) 

z + 
1 E; (I-E;) 

d12(~' .!u:e) l • ~)dE; -u,e' i(~, .!u,e t .!u,e' 
(l1b) 

+ 1 ~2 
d22 (~, .!u,e' ~u:e) f i(~, + E;)dE; 

0 ~u,e' !!u,e t 

(l1c) 

-1 
~ represents the inverse of the stiffness matrix ~. 

From (1) and ,(LP the following stiffness relationship is obtained 
• +-
~ = ~ (~, ~u,e' .!u,e)~ ~ (12) 

Inserting (10) in (6), the following differential equations are obtained for 

!.u:e and .!u:e 

• + + • + 
.!u:e) ~,e =!e (~, ~, !.u,e' 

=~ 
-(~, + 

~u:~) ~'e ~, !'u,e. 
(13) 

Corresponding to (12) , ~ can be eliminated in (13), and ~e introduced as state va-

riables by means of (1). 

Instead of the moment-curvature relationship (5) empirical Ramberg-Osgood functions 

can be used, resulting in equations similar to (6) and (8). 

3.2 Yield hinge model. 

As a special example of the class of' constitutive equation~ presented in the previous 

chapter a yield hinge model with bilinear hysteretic characteristics is considere~. 

In this model, plastic deformations only take place at the end sections, whereas the 

beam remains elastic between these points. 
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"';:0 

Figure 4: Yield hinge model. Moment-curvature relationship. 

Figure 5: Definition of elastic and plastic end rotations. 

In this case it is necessary to introduce the rate of plastic end rotations 
• T • + -
~e'pl = (Sl,p,l- S2 ,PI)' instead of the present values of ~u'e and ~u'e, to control 

the loading and unloading sequences. The local stiffness matrix (11) then becomes 

~ (~, ~,Pl) = [(l-al) (1-a2)~+al (1-a2)~+a2 (l-al)~] (14) 

k 2~.E. [-~ -~J (14a) 
-0 L' 

~l 3EIo [ ~ ~J (14b) 
L 

~2 3EIo [~ ~J (14c) 
L 

a i (~, ~,pl) H(-M+M,)[l-H(-ei )]+H(-M-M,)[.l-H(a )] 
y 1 ,pI Y 1 i,pl 

,i I, 2 (15) 
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~i = 1, when yield hinge i is open and loaded, see figure 4.In this condition 

Bi,pl F O. 

a i = 0, when yield hinge i is closed or is at the point of being unloaded into the 

elastic range, see figure 4. 

The plastic end rotation ~,pl is determined from the following relation, cf. fi

gure 5. 

~ ~,el + ~,pl (16) 

T 
where .9_ e, el 

related to the 

(Bl,el' B2 ,el) is the elastic part of the end rotations. These are 

end section moments M through the stiffness relationship. 
-<l 

M = k B 
-e -0 -e,el 

where ~ is given by (14a). 

From (10), (17) follows 

M k B = k !"el 
.. 

-e -e -e -0 

e k -1 k e 
-e,el ~ -e -e 

From (14) , (16) , (18) then follows 

For given ~, ~ (19) can be solved for ~,pl, i.e. 

(17) 

(18) 

(19) 

(20) 

~ 1 = h (M , a ) (21) 
-e,p -e -e -e 

Inserting (21) in (14), the constitutive relation can be written 

(22) 

The rate of the end section rotations ~ can be eliminated from (22), and Ee can 

be introduced as state variables by means of the compatibility equation (1). 

4. SYSTEM ANALYSIS 

System equations are derived, expressing the equations of momentum and moment of 

momentum for all free nodes, due to elastic restoring forces, restoring forces from 

member end moments and external loadings. The resulting equation may be written 

m r· + ~ r + aT M = !(t) (23) 

(23) is easily derived from the principle of virtual displacements. 

r is a vector of all translational and rotational nodal degrees of freedom. 
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M is a vector of all member end moments, which have been introduced as internal de

grees of freedom. 

f is a vector of external loadings conjugated to r. 

m is the mass matrix. In the present formulation it is assumed that rotational 

inertia is included, e.g. through a consistent mass matrix. m is assumed to be posi

ti ve definite. 

~ is a stiffness matrix, specifying the elastic restoring forces from nodal degrees 

of freedom not conjugated to ~. Further storey drift from p-6 effects may be inclu

ded in ~.Notice that ~ here signifies a global stiffness matrix and must not be mis

mistaken for the .::lement stiffness matrix (14a). 

~T~ represents the restoring forces from the member end moments. a is the compati

bility matrix of eq (1) in global coordinates, assembled in rows according to the 

components of M. Hence, a relates the internal degrees of freedom ~ to the global 

degrees of freedom ~. Note that restoring forces from M occur in both rotational 

and translational degrees of freedom. 

Further, the constitutive equations (12), (13) for each beam element are accessible, 

one for each component in M. These are assembled in the following equations. 

kIM, + -)a r M z , z -- -u -u -- (24) 

Z + f+(i.., + 

'":' } ~, z , 
-u -u 

- + z !. (i.., ~, z , z ) 
-u -u -u 

(25) 

k is an assembly of local stiffness matrices given by (12) and (22-). Further z + and 

~ are assemblies of. corresponding element quantities z + and z 
-u/e -u,e 

-u 

In order to maint.ain dynamic equilibrium at each time stage during the process, M 

should be eliminated from (23) by (24). Hence, 

m r + [k + aT k (M, 
--<> ---

+ z -- z 
-u'-u (26) 

The system equations are then given by (24), (25), (26). 

In order to increase the numerical stability of the system equations high frequency 

modes can be removed by the use of a Guyan reduction [18) or a normal mode trans

formation. Both transformations considered are related to loss of information com

pared to the original equations. In the Guyan transformation this is due to disre

garding of the inertial forces related to the introduced slave-degrees-of-freedom. 

In the normal mode transformation this is due to the truncation of the eigenmode 

expansion describing the response process. 
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5. LOADING PROCESS 

The external loading !(t) in (26) is modelled as a filtered white noise process. 

Consider the case of seismic excitation with a Kanai-Tajimifilter with the parame

ters ~ and 00 , [15]. If r specifies the deformation of the frame relative to 
9 9 -

the earth surface, !(t) is given by 

m-lf = U[21; wi: +00 2r ] 
-- - ggogo 

m-l is the inverse of the mass matrix, ro is the earth surface motion relative 

(27) 

to bed rock level, and ~ is a vector specifying the deflection in all global degrees 

of freedom for a unit horizontal earth surface motion. 

The bed rock acceleration is modelled as an amplitude modulated Gaussian white noise 

process 13 (t) W·(t). 13 (t) is a deterministic intensity function and W (t) is a unit in-

tensity Gaussian white noise process, i.e. 

E[W(t)] = 0 

E[W(tl )W(t2)] = o (t l -t2) 

(28) 

(29) 

The bed rock acceleration process is related to the earth surface motion through the 

stochastic differential equation 

r· + 21; 00 i: +00 2r = -Il(t)w(t) 
o g gog 0 

(30) 

The filter parameters I;g and oog may be modelled as deterministic functions of time 

in case of time-varying spectral contents of the earth. surface motion process. 

From (27) and (30) the following differential equation for the loading process 

can be derived 

m-lf = u[-2~ 00 3r -100 2(1_41; 2)i: -21; .00 13 (t)W(t) ] 
9 gog gog g (31) 

If the auto-spectral density of the earth surface motion has multiple spectral peaks 

a more involved filter should be applied. If the frequency response function of the 

filter can be written .as a rational functio~ the filter is equivalent to an ordinary 

differential equation similar to (30) and (31). 

In other applications such as offshore engineering and wind loading !(t) should be 

modelled as a filtered Gaussian white noise vector process {!(t)}. The loading pro

cess is then obtained as the solution of a coupled system of ordinary stochastic 

differential equations. 
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6. SAFETY MEASURES 

6(1) 

16(1)I,6m(l) 

Figure 6: Sample curves of e (t), Ie (t) I, em (t) 

Failure of a beam element is defined to take place, when the ultimate strain in the 

end sections exceeds an allowable level. In yield hinge models the rotational capa

city of a section is normally related to the ultimate strain. Failure then takes 

place, when lei in a beam element exceeds a critical level a for the first time. 

Hence, the reliability can be controlled by introducing an extra state variable em 

defined by 

e (t) ~sup le(T)1 
m TE[O,t] 

(32) 

Sample curves of e(t), Ie (t) I and em(t) are shown in figure 6. All sample curves 

of em(t) are non-decreasing functions with time, 

The sample curves of em are differential with probability 1 except at a set of t-va

lues with Lebesgue measure O. Under these restrictions em(t) fulfils the following 

di fferential equation, cf figure 6 • 

8 (t) ~ dd le(t) IHI: lal (l-Hl:- d
d lei]) -e (t)] m t t m 

~ sign(e)e H[lal(l-H[-sign(e)8])-e (t)] 
m 

(33) 

\>.here H is defined by (7). 

a and e can be expressed by already introduced state variables r and t, using the 

compatibility equation (1). All equations (33) can then be assembled in the follow

ing vector differential equation 

8 ~ n (r, i, e ) 
-m "'-- - -m 

(34) 
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7. DYNAMIC SYSTEM ANALYSIS 

(26) and (30) are written as equivalent coupled first order differential equations. 

In combination with (24), (25), (27), (34) the integrated dynamic system made up of 

the structural system, the safety measures and the loading process can be written 

as the following Ita-differential equations 

i: 

·r· 

ro 

i: 
o 

Z= ----- A= 
M 

z 
--u 

8 
-m 

01 11011°10101,01010 
I - I I I I. 

----+-------------~---+----~---~----~---~---.----
O! 01.!.!O!O!OiO!O!O 

----.-------------~---+----~---~---_r---~---. ___ _ 
I -1 T I I I I I I I 

° :-!!'.. (~+~~~ ° i rl~ir2~' ° 1 ° : 0: ° 
----+-------------~---.----~---~---_r---_r---+----

0: 0 lO:O:l~O:O:O:O 
--_~l _____________ J---!----~---JL---~---~---!----

I I I I I I I I 

o I 0 1 0 : r): r 4 : 0 : 0 : 0 I 0 
----+-------------4---+----~---_r----r----r---+----

° i k a : ° I ° i ° ,I ° 1 ° 1o: ° I -- I I I . I I I 
----t-------------1---t-----r---~----r---ii---t----

0: ° :°:°:°1°1°:°1° ----t-------------... ---+--~--+-----I-----I----T---1"----
01 ° !0!0!0!0:010!0 

----+------------- ... ---+----;----;-----+----;----1"----
01 0101010:0101010 

I I I I I I I I 

-21; w 
g g 

£(~= 

(35) 

Q. ° 
° Q 

° b i !:!. 

° ° 
° b 2 

b= (35a) 

° ° 
t(~) ° 
-

! (~) ° 
'l(~) ° 

(35b) 

(35c) 

{B(t)} is a Brownian motion process. Because the vector ~ is independent of the state 

vector ~, the solutions of (35) will be identical with probability 1, whether (35) 

is interpreted as an Ita or as a Stratonovich differential equation, [5, 6]. 

In the specification of the matrix ~ vector and matrix designations have mostly 

been omitted for simplicity. ~ signifies the identy matrix. 

The idea behind the partioning of the state variables as indicated by (35a) is to 

separate linear and non-linear differential equations. In this context it should 

be noted that ~ = ~(~, ~, ~) is variable, so ~ is actually a stochastic matrix. 

However, it will be assumed that k during short instants of time after t = to can 

be replaced by its expectation E[~] at t = to' where to is the time of most recent 

updating. During the solution process E[~] is then currently updated. Note that 

replacing k will E[~] means that the impacts of the variance of k on the variance 

of ~, i, £ ' ~ is ignored. Hence, it is to be expected that the variance of these 

quantities will be under-estimated. 

The differential equations for the moments of the vector process can be cbtained in 

various ways. The most natural way is to apply the Ita-formula [6,7] to the combined 
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kl 
stochastic variable q(~ = Zl Zk2 ... Zkn, and perform the expectation. Alternative-

e n 
ly, one can start from the Fokker-Planck-Kolmogorov equation associated with (35). 

In combination with natural boundary conditions and applying the divergence theorem, 

the differential equations for the moments are obtained. For the mean value func

tion jJ. (t) = E[Z. (t)] and the covariance function C .. (t) = E[(Z.-jJ. (t» (Z.-jJ.(t»] 
1. 1. 1.) 1. 1. )) 

the following differential equations valid for t>to are obtained, [6, 7]: 

E[Z. (t )] 
1. 0 

In the above equations the summation convention has been applied. Aij , c i ' b i , 

signify components of ~, £, ~ in (35) respectively. 

(36) 

(37) 

(36), (37) represent n(n+3)/2 different differential equations to be solved numeri

cally, n being the dimension of Z. During the solution process Aij is updated se

quentially as explained above. 

When the hierarchy of moments is truncated at second order level as with (36), (37), 

the main problem is that only the first and second order moments are determined, 

whereas the expectations on the right hand sides of the equations require that the 

full distribution of ~ is known. Hence, the joint frequency function fz of ~(t) 

has to be estimated solely from the second order moments. In the next chapter it is 

demonstrated, how this may be properly done with due considerations to the physics 

of the problem. 

8. MODELLING OF JOINT PROBABILITY DENSITY FUNCTION OF SYSTEM STATE VARIABLES 

For a certain element in the structure the following state variables have been defined 
. +-

~ = (~, ~, ~, ~e' ~,e' =U,e) where ~e = (aml , 6m2 ), 6mi (t) being the numeri-

cal maximum value of 6i encountered in [~t]. It will now be demonstrated that (36), 

(37) can be applied approximately if only the joint probability density of ~ is 

known. 

As mentioned, the stochastic matrix k in (34) is replaced by its expectation E[~], 

which is updated sequentially during the solution process. ~ is merely an assembly 

of the element stiffness matrices ~ given by (11) or (22). E[k ] can be calculated 
+ _ -e • 

from the joint probability density function of ~, =U,e' ~,e or ~, ~. 

The non-zero components of the vector £(~ are made up of the vectors it (~), !..- (~) .. 
~(~). These quantities are assemblies of the corresponding quantities at element le-
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+ • + + - • 
vel!e (~, ~, !u,e' ~~el, !e (~, ~, =U,e' =U,e)' 2e (~, ~, ~). Hence, £(~) 
only depends on Z through the local element stochastic variables, i.e. £(~) = £(~) 

and the expectation E[£(~)] = E[£(~)] in (36) can be evaluated at element level. 

For the expectations in (37) the following approximation is applied 

(38) 

(38) holds exactly, when ~ is jointly normally distributed, [12], or when £(Z) is 

a linear vector function of~. (38) is the crucial assumption in the equivalent line

arization method •.. As shown above, ci·(~ only depends on ~ through the local element 

stochastic variable .. ~, i.e. ci (~ = c i (;). For the partial derivative in (38) then 

follows aCi (Ze) 'f Z a Th [aci (Z) = 0, ~ k '" ~. e non-zero components of E ----] can conse-aZk aZk 

quently be calculated at element level. 

Because of the indicated approximations, the application of (36), .(38) is straight

forward, if the joint probability density function f (z) is known for all beam 
~e 4! 

elements. These are assumed on the form 

I + + _ _ 
fY_M 8 (~, !!!.,~) }l=l[O(zu i-E[z ,])o(z i-E[z ill] 
!...~:.:e-me .... , U,l. U, U, 

(39) 

where ~ = (81 , 82 , 81 , 82). 

I signifies the number of sections within the considered beam element, at which the 

unloading and loading sequences 'from the plastic ranges as specified by the non-di-
+ - .. 

mensional moments Zu i,:II ,are determined. As indicated by (39) these quantities are 
, U,1 + _ 

assumed to vary with zero variance at their expected values, E[z i]' E[z i]. Physi-u, u, 
cally this means that all loading branches ABC in figure 2b at a given time and place 

on the beam are all geometrically identical. Similarly, the loading branches CDE will 

be geometrically identical. The elastic-plastic transition points B and D will, how

·ever, vary determini~tically with time and place on the beam. 

8mi turns out to be approximately Gamma distributed 

, x < 0 
x > 0 i 1, 2 (40) 

2 The parameters a i and IIi are related to the mean ).Imi and variance ami of 8mi (t) as 

follows 
2 

a i (t) = ).I mi (t) 
(41) 2 

ami (t) 

IIi (t) a!t (t) (42) 
).Imi (t) 
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In case of yield hinge models, the states ML = My and Mi = -My' corresponding to 

plastic deformations, are associated with a finite probability, cf [171. Formally 

this means that the joint probability density 
+ 

finite values at the hyperplanes Ml = - My or 

the following form, which is a generalization 

[3]. 

function fx M of (~, ~) takes in-

+ -€-£f . th d M2 = - M. X M LS en assume on 
y -€--<a 

of a suggestion due to Minai & Suzuki 

-M -M 
+ 6(M +ml )6(M +m2 ) r f y~6 (~,ul,u2)du2dul 

y Y -<x>-oo 

(43) 

o for 

(ml,m2)~[-M ,M 1X[-M ,M 1. y y y y 

~6(~,ml,m2) is the frequency function of a 6-dimensional normal stochastic variable 

with mean ~~ and covariance matrix C~ .. In general ~~ F ~. and C~. F C h ~ L L J L L L J i j' were i' 

Cij are the mean and covariance of (;, ~) as calculated from (36), (37). However, 

the relationship between these. quanti ties is easily· calculated from (43). 

In case of a moment-curvature relationship as shown in figure 2 the total probabili

ty mass will be continuously distributed in 1-M ,M [X1-M ,M [. However, f 
+ y y y +y ~!:!e 

(;,ml ,m2 ) will have dominant peaks for ml ... - My or m2 ... - My. (43) is· then ap-

proximately used also in this case. 

In order to calculate E[g(a, a, am) 1 and E[ (Z-Jlz ) g(a, a, am) 1. where g(a, a, aJ is 

the right hand side of (33) and z€{a, a, am}' the joint probability density fa aa of 

(a , 6, a) should be estimated. 
m 

m 

As seen from (33), g(a, a, a ) = 0 except at the semiplanes 
• m d 

a-a = 0 A a > 0 or a + a = 
.m m 

o A a < 0, where g(a, a, am) = dt lal. The events {a-am 

o A a < O} are however related to a finite probability. 

takes infinite values at the said semiplanes. 

= 0 A a > O} and {a+a 
m 

Formally this means that fa aa 
m 
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Instead of am consider the auxiliary state variable 

s lal (1 - H[-sign(a)6])-a 
m 

(44) 

The event {a-am= 0 A a > O} U {a+am= 0 A a < O} is then tantamount to the event {S O}. 

The joint probability density of (S, a, a) is then assumed on the form 

... 
fsaa (s, t, tj = <l>3(S' t, t) + <5(s) f <l>3(u, t, t)du, s ~ 0 (45) 

0 

The mean values and covariances of (S, s, a) are calculated from the corresponding 

mean values and covariances of (am' a, S) by means of (44). The adjustable parameters 

of the 3-dimensional normal probability density function <1>3 are then easily calibrated. 

The joint distribution of (am' a, a) can now be expressed in terms of fsaa as follows. 

Fa aa (t , t, t) 
m m 

p(lal (l-H[-sign(S)a)-s < t A a < t A a < t) 
m 

min(O,t) max(O,t) 

f f 
o 

0+ 

J fsaa (s, T, 
-t 

m 

min(O,t) min(O,t) 
+ f f 

-t 
m 

max (O,t) 
T) ds dT dT + J 

min(O,t) 0+ • • 

o 
f f fsaa (s,T,T)ds dT dT 

-t -t m m 

max(O,t) max(O,t) 0+ 
T)ds dT dT + f f f fsae(s,T,T)ds dTdT 

o 0 T-t 
m 

(46) 

-t < t < t 
m- m 

fssa(ltl (l-H[-sign(t)t)-tm, t, t), 0 ~ tm < ... (47) 

~<t<oo 

9. RELIABILITY ANALYSIS 

The reliability of the structural system can now be calculated based on the assumed 

probability density function (40). 

Failure of the system in the interval [0, t) has taken place, if at least one of 

the safety measures ami (T) exceeds an allowable limit Q i for TE[o, tl. Because the 

safety measures are non-decreasing function with time, the probability of failure 

in the time interval [0, tl is then given by 

(48) 
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M signifies the number of control points. The system reliability (48) can only be 

calculated if the joint probability density of the considered safety measures em is 

known, which has not been considered in the present study. The failure in a certain 

control point i can, however, be obtained as 
CD 

Pf . (t) = l-p(e . (t)<a.) = J fe . (Xlt)dx,i=l,",M 
1. lDl. - 1. ai m1. 

(49) 

fe (Xlt) is given by (40). 
mi 

10. NUMERICAL EXAMPLE 

hltN2 1 11 '1 2N2 U ..u:)ts 
1'4' A4• 14, MY4 r E 

CO> 

" N 
...J 

,u3.A3. 13.MY3 142 

:f)(M4 

E I CO> 

" :; 

b=Sm 

Figure 7: 2 storey-single bag frame. Designation of global degrees-of-freedom and 

end section moments. 

Application of the theory will be demonstrated by the simply supported 2 storey

single bay frame shown on figure 7. 
~ , A., I , M specifies the mass per unit length, cross-sectional area, inertial 

i 1. i Yi 
bending moment of inertia and bending moment capacity of element i. All elements have 
the same elasticity modulos. Further the frame is modelled as a yield hinge model. 

The frame is loaded with horizontal forces f l , f2 and storey loads Nl , N2 , which 

are applied symmetrical at the system nodes as shown on figure 7. Deformations of 

the frame will then be antimetric and the symmetry can be utilized to reduce the 

problem. 

The system then has 2 rotational degrees of freedom and 4 translational degrees of 

freedom. The distributed element masses are taken into consideration through a consi

stent mass matrix ~. Further the p-6 effect due to the storey loads Nl , N2 are ap

proximately considered. 

The following data are applied 
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Beam IIi A .. I. M M 
(10-3m2) 

l. 

(103~) Y 
(kg/m) (10-5m4) (103Nm) 

1 46.0 5.86 2.63 78.7 82.8 

2 46.0 5.86 2.63 78.7 82.8 

3 2000 co 3.89 77.8 85.0 

4 1000 co 1.945 46.6 51.1 

E 2.1 • 1011 N/m2 

Nl (Ill Ll + 1l3L2 + 1l 3b )g, 9 9.81 m/s2 

N2 (1l 2L2 + 1l4b ) 9 
-1 

w 15.6 s I;g = 0.6 
9 

The autospectr~l density S of the bedrock-excitation process is 211 S = 0.15 m2/s2 
o 0 

To evaluate the results from the proposed non-Gaussian closure method, totally 

10.000 simulations with the initial conditions !o = ~ are performed. Generations of 

realisations of the broad banded zero mean Gaussian process is performed by the 

method of Penzien [16]. The integrated dynamical system is solved by a 4th order 

Runge-Kutta sceme from 0 to 20 To' where To = 0.98 s is the fundamental period of 

undamped linear eigenvibrations. 

In figure 8 the simulated probability density functions for the end section moments 

Ml and M3 respectively are compared with the assumed distribution given by (43) for 

N = 20 periods. At the section at Ml heavily yielding has taken place, whereas the 

section at M3 has deformed primarily elastically. 

0.8 

(2) (2) 

·1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -tOO -0.75 -0.50 -0.25 0.00 0.25 0.50 0.7S 1.00 

Q) MI/MYl b) M3/MY3 

Figure 8. Density functions for the end section moments .~ andM'3 respectively. 

(1) Theoretical probability density with parameters calibrated 

from simulated mean value and covariance. 

(2) Simulation. 
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From figure 8 it may be concluded that the proposed marginal distribution of the end 

section is applicable with or without yielding present. 

In figure 9 the distribution of the state variable 8m for various number of periods 

is shown for end section 1 and 3 respectively (cf. fig. 7) in comparison with the 

respective proposed distribution given by (40). 

2.00 fam 

1.50 

1.00 

0.50 (ll} (2) N=20 

2 3 4 5 6 8 

0) am (degrees) 

8 

6 

4 

O~~;-~~~~--r=~~~~--
0.0 

b) 

0.1 0.2 0.3 0.4 0.5 0.6 
am (degrees) 

Figure 9. Density functions for the state variable 8m 

a) End section 1 

b) End section 3 

1) Simulation 

2) Theoretical probability density. Parameters a 
and S estimated from simulated mean and covariance 

It should be emphasized that the scatter on the simulated curves is due to scarcity 

of sample data and not a physical condition. 

It may be concluded that the assumption that 8 (t) is Gamma distributed seems pro
mi 

mising for a small ratio of yielding present. 

11. CONCLUSIONS 

Based on physical arguing a non-Gaussian closure method for hysteretic multi-storey 

frame is suggested in which the adjustable parameters can be determined solely from 

the moment equations at second order. Further the proposal will be asymptotically cor

rect in the absence of plastic deformation, and can hence be considered representative 

at least in case of moderate plastic deformations. 

The relevance of the model has been demonstrated by extensive simulation for a 2 sto~ 

rey yield hinge frame. From these simulation studies it further follows that the pro

posed safety measures to a great extent follow a Gamma distribution. 

Results from the application of the present model will be addressed later on. At pre

sent work is done on modelling the joint probability density of the safety measures, 
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making a true system reliability calculation possible. Further improved marginal pro

bability density functions for the safety margins are searched for in terms of trun

cated Laurent series, which necessitates the formulation of extra moment equations 

in order to determine the extra parameters in these series. 
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1. INTRODUCTION 

SYSTEM RELIABILITY MODELS FOR BRIDGE STRUCTURES 

Andrzej S. Nowak & Niels C. Lind 
Department of Civil Engineering 

University of Michigan, Ann Arbor, MI, USA 48109 

An important problem in the developed part of the world concerns the state of 

repair of society's technology infrastructure, of which highway bridges are an 

important part. According to a recent survey by the U.S. Federal Highway 

Administration more than 200,000 bridges in the U.S.A are considered deficient 

because they do not satisfy the requirements of current design specifications. On 

the other hand, bridge tests often reveal that the actual strengths exceed the 

calculated values considerably. This points to a need for a different approach to 

the evaluation of existing structures. 

In traditional bridge analysis the calculations are performed for individual 

members, using conservative values of load. This does not adequately reflect the 

ductility and load sharing of the structure. Accurate analysis is extremely 

difficult because of random variations in geometry and mechanical properties of 

materials. The objective of the paper is to describe system reliability models for 

the analYSis of highway bridges. The models serve in the development of design 

provisions, particularly in the selection of load and resistance factors. 

Ultimate and serviceability limit states are considered. The ultimate limit 

states include the bending moment capacity and shear capacity. The acceptability 

criteria for ultimate limit states are based on the magnitude of load and resistance. 

The serViceability limit states include cracking, vibrations and deflections. 

Fatigue is also treated formally as a serviceability limit state. In serviceability 

limit states the frequency of occurrence plays an important role in the criteria for 

acceptability. 

Load models are based on the available data, truck surveys, weigh-in-motion 



www.manaraa.com

330 

studies and overweight citations of Police. Bridge structures are considered as 

systems. The resistance of component elements is developed for composite steel 

girders, prestressed concrete girders and for timber stringers. The sys tem 

reliability is evaluated using computer programs specially developed for the purpose. 

The models are demonstrated by means of practical examples. 

The composite steel girder bridge is modelled as a grid of elements composed of 

sections with nonlinear moment curvature relationships. For a fixed truck 

configuration, the ultimate load is calculated by gradually increasing the initial 

wheel weights until the deformations exceed pre-established limits. 

Moment-curvature relationships have been developed for various types and sizes 

of prestressed concrete girders. Live load spectra are calculated for various 

girders. The results may serve as a basis for the analysis of the serviceability 

limit states. 

Three types of timber decks are considered: sawn stringers, non-prestressed 

laminated decks and prestressed laminated decks. The reliability is calculated using 

simulation. 

Considerable differences between the reliability of single members and the 

reliability of systems was observed. The study indicates that the actual safety 

reserve must be evaluated by analysis of the structural system rather than single 

members (the traditional approach). Further work is required to develop more 

efficient numerical procedures. 

2. LOAD MODELS 

The maj or load components for highway bridges are dead load, live load wi th 

impact, environmental loads (wind, earthquake), and special loads (braking forces, 

collision). The magnitudes of the load effects depend on the structural type, span 

length, type of traffic and other characteristics. For example, for long and short 

spans (up to 100 m.), the major loads are live load and dead load. The truck 

position on the bridge and multiple presence (side-by-side or in one lane) are also 
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important. For short spans (less than 30 m) it is particularly important to know how 

the truck weights are distributed on the structure. In case of very short spans 

(less than 6 III), the live load is dominated by axle weights. In this study three 

load components are considered: Dead load, live load and impact load. 

The dead load, D, is the gravity load of the structural and nonstructural 

elements perlllanently connected to the bridge. The mean-to-nominal ratio and 

coefficient of variation are different for various dead load compon.nts. In 

particular, they are 1.03 and 4 per cent respectively for factory-made members, 1.05 

and 8 per cent for cast-in-place concrete and 1.0 and 25 per cent for asphalt 

respectively. Because the dispersion of D is slIIall in comparison with the dispersion 

of L, it may be assumed that D is normally distributed. 

The live load, L, covers a range of forces produced by vehicles moving on the 

bridge. The model uses existing Canadian and U.S. data, together with data on some 

1600 Police citations of overweight trucks in the state of Michigan. Maximum 

1II0lllents, ML, were calculated due to these trucks for various spans. The ratio MLIMA 

was also calculated, where MA is the mOlllent due to the AASHTO truck. 

The 50 year maxilllulII live load was developed by extrapolation. For several 

spans the basic parameters are given in Table 1. For cOlllparison the means and 

coefficients of variation are also given for two models using other data bases: 

Ontario truck survey (Nowak and Zhou 1985) and weigh-in-motion (Chosn and Moses 

1984). The latter includes impact. The means in Table 1 are expressed in terms of 

the AASHTO specified moment. 

A vehicle's position on the bridge is important to determine the load 

distribution to girders. The transverse location is modelled on the basis of 

observation (Nowak and Crouni 1986; Tantawi 1986). 

IlIIpact is traditionally expressed as a fraction of live load. Recent tests have 

indicated that the mean impact factor ia about 0.05. The coefficient of variation is 

larger for steel bridges than for prestressed concrete, and larger for slllaller spans; 

an average value is V - 0.45. 
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The dynamic effect is an integral part of the live load model. The major factors 

that affect the dynamic load on a bridge include: surface condition (bumps, 

potholes), natural frequency of the bridge (span length, stiffness, mass) and 

dynamics of the vehicle (suspension, shock absorbers). It is very difficult to model 

the individual contributions of these three factors. Some dynamic bridge tests were 

carried out in conjunction with the development of the OHBDC (Nowak and Zhou, 1985). 

The resulting distribution parameters are listed in Table 2. 

Table 1. - 50 Year Live Load in terms of AASHTO moment. 

Span (m) 
Med.1 Statistics 18 24 30 36 

Onte,10 truc:k moan 1.19 1.77 1.92 2.0~ 
lurvey 

COY 0.11 0.11 0.11 0.11 

Welgh-ln-lDOtion aeon 2.2 2.U 2.~~ 2.6~ 

COY 0.18 0.12 0.12 0.07 

Usod 1. this moan 1.8~ 1.95 2.15 2.21 
Itudy 

COY 0.1 0.1 0.09 0.1 

Table 2. - Dynamic Load Factors. 

M.an Value Standard DeviaUon 

Typo of structure Rango Assumed Ran;. Assumed 
Value Value 

St •• l 0.08-0.20 0.14 0.0~-0.20 0.10 

Prestressld concret.: 
AASH'l'O type girders 0.0~-0.10 0.09 0.03-0.07 O.O~ 
lox girders and. Ilabs 0.10-0.1~ 0.14 0.08-0.40 0.30 

Others frames, 0.10-0.2~ 0.11 0.12-0.30 0.26 
trulse., ... etc. 

3. MECHANICS OF BRIDGE RESISTANCE 

The grid model and direct stiffness method are combined together with the 

incremental load procedure to predict the post-elastic behavior of three types of 

highway bridges. The steps are: 

1. Modelling the bridge deck as a set of grid elements and computing their 

properties (using the specially developed computer program). 

2. Defining and assembling the general form of the element stiffness 
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matrix that can be updated at each level of loading. 

3. Distributing the wheel loads to grid nodes and forming the load vector. 

In evaluating the ultimate strength capacity of the grid system the following 

assumptions are made: (1) The members lie all in the same plane; (2) all loads are 

perpendicular to this plane; (3) the deformations are small; and (4) the joints 

between elements are rigid. The overall stiffness matrix of the structure is 

composed of different element stiffness matrices. The stiffness matrix for a member 

with a plastic hinge is formed as for a nonprismatic beam element. Numerical 

integration is used to form the flexibility matrix of such an element. 

Special consideration is given to load partitioning. When the position of a 

load does not coincide with a grid node, it is distributed linearly in the 

longitudinal direction without taking into account the moments that are associated 

with this distribution. The load is distributed nonlinearly in the transverse 

direction, i.e. the moments associated with the apportioning are accounted for. This 

idealization is reasonably accurate if the bridge is divided in the longitudinal 

direction into panels of length not more than 1.5 times the spacing of longitudinal 

elements (Tantawi 1986). 

The elasto-plastic analysis is performed using a stepwiae repeated load 

incremental procedure. Initially the bridge is analyzed elastically. For each load 

increment, member stiffness matrices are updated to account for the newly formed 

plastic hinges. The procedure is as repeated until unacceptable permanent 

deformation has occurred (taken as one per cent of the span length). 

4. STOCHASTIC RESISTANCE MODEL 

The resistance of a bridge member, R, is a random variable. It is convenient to 

consider R as the product of three random variables 

R - R(M,F,P) - ~ M F P (1) 

where Rn is the nominal (design) value of the resistance, M is a factor representing 

material properties (including strength, modulus of elasticity, cracking stress and 

chemical composition), F is a factor representing fabrication effects (geometry, 
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dinlensions and ,",orkmanship and P is an analysis factor (including uncertainties due 

to approximate analysis, idealized stress and strain models and support conditions). 
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Some information about the variation of parameters M, F and P is available for 

the basic structural materials, members and connections. However, bridge members are 

often made of several materials (composite sections) and require special analysis. 

Typical stress-strain curves for concrete, reinforcing steel snd structural 

steel are shown in Fig. 1. The cross section of a girder was divided into several 

rectangular horizontal strips of small depth, as shown in Fig. 2. The load

deformation relationship for the section was developed by incremental loading, using 

the stress-strain curves of the basic materials together with the Bernoulli 

hypothesis. The resulting parameters are given in Table 3 for selected span lengths 

for composite steel girders, for reinforced concrete girders and for prestressed 

concrete girders. The method of Rosenblueth (1975, 1981) was used in the stochastic 

analysis. 

The major parameters determining the behavior of timber members are the modulus 

of rupture and the modulus of elasticity. Extensive test data indicate large 

variation in both. The coefficient of variation of the modulus of rupture exceeds 

30% and therefore it dominates the reliability analysis. 

The resistance of a bridge depends on the resistance of the members (girders) 

and the connections, as well as on the redundancy. Redundancy is here taken in the 

general sense as the ability of the structure to continue to function safely in an 

almost normal manner despite failure of one of the main load carrying elements. To 

evaluate the redundancy of a structure, the failure modes of the main load carrying 

members must be examined to determine the possible secondary (redundant) load paths. 

These load paths must then be evaluated to determine that there are no weak links 

that could prevent the development of their full capacity. There are at least two 

load paths in a redundant structure, namely the primary path and a secondary path. 

However, the secondary path is not as stiff as the primary path. There must be some 

indication that the bridge is in distress. If not, the bridge may continue to be 

used without repair until the secondary path also fails. 

Redundancy must be clearly separated in concept from the natural interaction of 
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bridge members that is often underevaluated in the design process. In the past, the 

use of the load distribution factor has generally resulted in an underevaluation. 

Newer methods of analysis permit more accurate evaluation. Tests have shown that the 

interaction of non-structural elements such as wearing surface, curbs, parapets etc. 

may be significant in serviceability conditions. 

5. PRACTICAL EXAMPLES 

Three cases were considered: No correlation, partial correlation, and perfect 

correlation between the strengths of the girders. The reliability indices were 

calculated for the whole bridge in each case. For comparison, the reliability was 

also evaluated for a single girder or beam. The study considered a reinforced 

concrete T-beam bridge. The bridge was built in New Zealand in 1937 and tested to 

failure in 1977 after being in service for 40 years (Buckle et al. 1985). Also 

considered were four composite steel girder bridges with spans of 40 ft to 100 ft (12 

01 to 30 01). These bridges were designed following the allowable stress design 

procedure outlined in the AASHTO Specifications (1983). The procedure was finally 

demonstrated on a timber deck bridge structure. Stringers were made of Douglas Fir, 

Select Structural grade, with a span of 16.5 ft. (4.7501). The distribution of the 

minimum ratio of modulus of rupture-to-actual stress was derived using simulation. 

The results are summarized in Table 3. 

6. CONCLUSIONS 

Highway bridges of small and intermediate span are relatively simple structural 

systems, but they require a systems reliability analysis for accurate assessment of 

the structural adequacy. 

Load models require refinement in the range of high values. Police records of 

overweight citations may be useful in addition to weigh-in motion and survey data. 

A grid analysis procedure has been found useful for the nonlinear analysis 

of girder bridges including the shear forces and torsional effects. The procedure 

apparently provides accurate results and requires 

than conventional finite element methods. 

considerably less computer time 



www.manaraa.com

337 

In addition to straightforward simulation, Rosenblueth's point estimates may be 

used to determine the influence of random variables on the structural system 

response. This considerably reduces the number of required computer runs. 

Correlation between the strength of the main girders, which is a factor that is 

very difficult to ascertain, does not appear to have much effect on the system 

reliability. 

TABLE RESISTANCE PARAMETERS 

Span 
!tIm) 

PM VpM P vp R/Rn VR 

COMPOSITE STEEL GIRDERS 

40 (12) 1.03 0.089 0.99 0.08 1.02 0.12 

60 (18) 1.02 0.0902 0.99 0.08 1.01 0.12 

80 (24) 1.02 0.0866 0.99 0.08 1.01 0.12 

100 (30) 1.02 0.0864 0.99 0.08 1.01 0.12 

REINFORCED CONCRETE GIRDERS 

40 (12) 1.24 0.095 1.00 0.046 1.24 0.11 

60 (18) 1.20 0.105 1.00 0.046 1.20 0.11 

80 (24) 1.23 0.106 1.00 0.046 1.23 0.12 

PRESTRESSED CONCRETE GIRDERS 

40 (12) 1.05 0.031 1.00 0.046 1.05 0.06 

60 (18) 1.04 0.036 1.00 0.046 1.04 0.06 

80 (24) 1.05 0.031 1.00 0.046 1.05 0.06 

100 (30) 1.05 0.040 1.00 0.046 1.05 0.06 

* FM represents two parameters M and F. 
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Table 4. Results of Reliability Analysis with Correlation 

Reliability Index, B 

System, Bs 
Bridge Type Element, 8e 

p = 1.0 p = 0.5 p = 0.0 

Reinforced Concrete 4.8 7.1 7.5 7.9 

Composite Steel 3.8 6.0 6.3 6.9 

Prestressed Concrete 3.4 5.0 5.1 5.3 

Sawn Stringers 2.5 4.2* 

Laminated Deck 3.0* 

Prestressed Deck 7.5* 

* Calculated for actual correlation coefficient 
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1. INTRODUCTION 

MODELLING OF THE STRAIN SOFTENING 
IN THE BETA-UNZIPPING METHOD 

Wieslaw Paczkowski 
Technical University of Szczecin 

AI. Piastow SO, PL-70-311 Szczecin 

The strain softening is a phenomenon where the increasing generalized 
strain is accompanied by the decreasing generalized stress. 
Both experimental and theoretical results indicate that compressed 
steel members of space trusses display considerable loss of load-
- carrying capacity in the process of increasing axial deformations. 
In the most commonly used range of the slenderness ratio such loss 
can reach the value of 75% of the maximum force carried by the member, 
while the total axial deformation does not exceed 0.5% of the initial 
strut length. The phenomenon can be considered as strain softening. 
A similar phenomenon appears in the plastiC hinges of concrete frames, 
however, with less considerable quantities concerning bending moment 
and corresponding curvature. 
Most of the existing reliability algorithms take into account the 
strain softening in a simplified way by means of an elastic-brittle 
model with a constant residual force. The paper deals with the strain 
softening elements modelled by CO continuous P-d relations, where P 
is an axial force carried by the element and d is the axial deforma
tion. The beta-unzipping method has been applied for the reliability 
analysis of trusses made of elements displaying strain softening be
haviour. 
The beta-unzipping method, first suggested by Thoft-Christensen [1 ] , 
developed by Thoft-Christensen and S~rensen [ 2 ] , and fully described 
in Thoft-Christensen and Murotsu [3], provides an efficient tool for 
the estimation of the reliability index of complex strut structures. 
Usually such structures possess a high degree of redundancy and there
fore, their reliability model cannot be established explicitly. An 
approximate approach based on presentation of the structure as a set 
of parallel systems connected in series makes it possible to calculate 
the reliability index. The reliability index can be calculated at dif
ferent levels. From the practical point of view 0, 1, 2 and mechanism 
levels can be of interest. The definition of a failure state of each 
possible failure element is a basic information necessary for perfor
ming calculations. The actual version of the beta-unzipping method 
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considers three models of member behaviour: perfectly brittle, per -
fectly ductile and elastic-residual. Ductile and elastic-residual ele
ments lose their stiffness after reaching the failure state, but re
tain their ability to carry full or partial constant force independ
ently of progressing displacement. Perfectly brittle elements are re
moved from the structure after reaching the failure state. The con
sidered models are presented in figure 1. 
It has been experimentally observed that in the process of increasing 
external load some members of space trusses lose their ability to car
ry the load while diflections remain in the range acceptable for small 
- from the theoretical point of view - displacements. The main purpose 
of the paper is to present how a general member behaviour including 
strain softening may be taken in accout in the reliability analysis 
of structures. The beta-unzipping method has been used to perform the 
analysis, thus some details of the solution are discussed. 

2. STRAIN SOFTENING BEHAVIOUR OF COMPRESSED BARS 

Some spectacular collapses of spatial strut structures contributed 
substantially to a view that the full information concerning post
- buckling behaviour of compressed bars should be available [4]. The 
information is necessary to perform the limit state analysis of the 
structure as well as the reliability analysis. A short review of the 
post-buckling behaviour of compressed bars presented below is limited 
to a static, single process of loading or unloading. 
Different theoretical approaches were adopted to analyse the post -
- buckling behaviour of compressed bars. The most sophisticated ap
proach which makes it possible to take into account such phenomena as 
initial stresses, local imperfections and non-linear material behaviour 
is to use the finite element method /PEM/. However, because of its 
complexity,it did not gain wide popularity. Usually the whole structure 
is analysed and thus the full PEM analysis of each singular member 

p p p 

L-~ ______ ~_d d d 

Figure 1. Models of member behaviour. 
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becomes unacceptable. 
In the most typical cases the post-buckling behaviour can be consid
ered as an in-plane phenomenon. This allows for reduction of the com
pressed bar usually to a one or two-degrees-of-freedom system with a 
developing plastic hinge. Equilibrium conditions and geometrical com
patibility of such a system are sufficient to find the relation between 
the axial load and axial shortening /P-d curve/. 
Usually the influence of initial imperfections can be taken into ac
count reducing all of them to the influence of an equivalent initial 
curvature. 
Much effort has been made to establish the P-d relations. Some recentiy 
published theoretical models which have found further applications in 
more advanced problems /cyclic loading/ are briefly described below. 
Such models were assumed to fit the purpose of the paper, which gave 
a full description of the element behaviour in the process of loading 
and unloading appearing at any stage. Only pin-ended bars are consid
ered. 
Higginbotham and Hanson [ 5 J formulate and examine two analytical so
lutions employing the plastic hinge concept. Geometry of a bar with 
a developing plastic hinge under compression and tension is shown in 
figures 2a and 2b respectively. In the first solution exact expres -
sions for the length of the bar S and its projection X are calculated 
from the elliptic integrals of the first and second kind using an exact 
expression for the curvature between the member ends and its mid length. 
This model gives a force-deformation pattern which corresponds to the 
displacement controlled behaviour of the bar. 
The same pattern can be obtained using another analytical solution 
where linear variation of the bending moment between the member ends 
and mid length is assumed. This leads to the formulation where the 
force for the assumed displacements of the bar ends is calculated as 
a root of a sixth degree polynomial. Deviation less than 5% for these 
two solutions in comparison with test results is reported. 
Papadrakakis and Chrysos ( 6 J applied to their model the influence of 

a) L I: x o,ld 
- -------------6:;.f. 

~~ 

b) 

I: 
L 
x 

Figure 2. Plastic hinge under compression and tension. 
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initial imperfections in the form of initial out-of-straightness fol
lowing a model developed by Nonaka [7] for perfect bars. As the rela
tion P-d is sought, the components of d are as follows: 

/ 2.1 / 

where 
de is the displacement between the ends due to uniform elastic axial 

deformation existing in all loading phases, 
dg is the change of displacement caused by lateral deflection, 
dp is the plastic axial deformation, 
dt is the plastic elongation in the straight configuration distributed 

along the bar axis. 
The initial imperfect shape is assumed in the form of a sine curve. 
In the elastic phase the additional deflection shape also becomes a 
sine curve. Because of initial curvature the critical value of axial 
load is defined as a force for which a plastic hinge either in tension 
or compression is produced. The critical force depends on the magnitude 
of the initial imperfection and on the type of the cross-section. The 
post-buckling shape of the bar is described by the small displacement 
equation applied to each half part with boundary conditions modified 
by the developing plastic hinge. To find the angle of plastic rotation 
and corresponding plastic displacement the yield curves between axial 
force P and bending moment M is presented - for the sake of simpliCi
ty - in the piecewise linear form which allows easy calculation of 
the derivative dM/dP. This simplification makes it possible to obtain 
an expression for the displacement d in a closed form. The phase of 
plastic recovery is calculated from the same equation with properly 
modified boundary conditions. 
W. F. Chen and D. J. Han present in [8] some fundamental relations 
concerning compressed tubular elements. [B] is related to previous 
works by W. F. Chen et a1. To trace the post-buckling behaviour of 
the element the assumed deflection method was developed. The method 
is a simplified approach based on the additional assumption of the 
deflected shape of the column. It is assumed that an initially assigned 
deflection function does not change during the loading process but 
simply changes its magnitude. The load-shortening relation P-d can be 
obtained in a numerical way taking into account shortening due to the 
axial strains and due to the geometrical change of the lateral shape 
of the column. 
All presented approaches claim good agreement with test results and 
are confirmed in other works. Some fundamental results based on these 
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Figure J. On~ cycle behaviour of an axially loaded bar. 

theoretical models are shown below. 
The most characteristic parts of a one cycle behaviour of a compressed 
element can be seen from a diagram shown in figure J [5]. This diagram 
was obtained using the plastic hinge concept in the displacement con
trolled mode. 
The following phases can be distinguished: 
A - B pre-buckling shortening. This phase can be linear or slightly 

non-linear if initial curvature is taken into account. 
B - C post-buckling elastic shortening. The critical load is reached 

at point B. Point C marks the beginning of plastic deformation, 
thus up to that point the behaviour is elastic and therefore 
reversible. 

C - n the plastic hinge formation, elasto-plastic behaviour. The shape 

n - F 

F - G 

G - H 
H - I 

of a compressed bar corresponds to that shown in figure 2a. 
The reverse of displacements can appear at any point D /n; ••• /. 
elastic unloading caused by the reverse of displacements. At 
point E /E; E'; ••• / there is a change of the sign of the in -

ternal force P and a change of the bar shape from that shown 
in figure 2a to that shown in figure 2b. 
plastic rotation in the plastic hinge due to progressing incre
ment of the member end displacements. 
perfectly plastic displacement of a tensile bar. 
elastic unloading of a tensile bar with residual plastic deform-
ation. 

Two main factors contribute to the force-deformation pattern of com
pressed bars: slenderness A and initial imperfections. The influence 
of initial imperfections can be taken into account by means of an e
quivalent initial curvature. Figure 4 shows three basic patterns of 
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p p 

initially perfectly straight 
with initial imperfection 

Figure 4. Influence of initial imperfection. 

p 

d 
--~~----*-------

behaviour influenced by the slenderness and initial imperfections [ 6]. 
These curves can be considered to be typical and they reflect all fea
tures of curves obtained in other ways. 
To compare a typical behaviour of struts of the same linear-elastic 
stiffness but of different slenderness all the curves can be presented 
in one set of coordinates: E: axial strain, 6 axial stress as shown 
in figure 5 [ 9 ] • 
A very limited amount of data is available for the estimation of random 
parameters of the P-d curves. In general, the P-d relation 1s a sto
chastic process, but from the point of view of efficiency of calcula
tion a proper simplification should be adopted. 

6 [kN/cm2] 

,---------- ),=0 

-200 

-100 
A=50 
A=100 
A=150 
A=200 E 

-1 -2 -3 -4 -S(xl(f3 ) 

Figure 5. Influence of slenderness. 
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J. DISCRETE MODEL OF ELEMENT AND STRUCTURE BEHAVIOUR 

Linearization plays an important role in the prooess of reliability 
estimation of complex systems. Thus an introduction of linear relations 
at possibly early stage of calculations may lead to significant s:l.m
plifioation of the whole analysis. It is proposed to apply a piecewise 
linear presentation of the P-d relation. Such a model has already been 
used e. g. in [ 9, 10 1 • A number of stretches approximating the rela
tion depends on the sensitivity of the structure and the burden of nu
merioal calculations. Figure 6 presents an example of a piecewise lin
ear relation for a medium slender strut. 
The following notions are introduced: 
a phase - it'is each streoh of the P-d relation oharaoterized by a be

sinning di _1 and an end di as well as by oorresponding axial 
foroes Pi - 1 and Pi. All of them can be random. To maintain 
linear probabilistic relations there is assumed constant 
axial stiffness ki for each phase /i=1, 2, ••• /, which redu
ces the total number of independent random variables. Axial 
stiffness ki oan be positive, negative or equal to zero. 

a configuration - it is a set of actual phases of all elements. Vllien
ever any element changes its phase then there is a change 
of configuration. At each configuration the struoture behaves 
in a linear way determined by the actual global stiffness 
matrix and the corresponding set of fictitious loads. 

p 

d 
-----T-----,~---------r-----------------

'F. 
I 

Figure 6. Piecewise linear model. 
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a generalized failure element - each phase is considered as a failure 
element. To distinguish it from a real physical failure ele
ment a word "generalized" is introduced. A generalized failure 
element is indicated by ji where j is a physical element num
ber and i is a phase number. 

Classical approach to the limit state analysis in the plasticity theory 
is displacement independent. Existence of strain softening requires 
displacement dependent analysis. A short description of a step-by-step 
approach applying an idea of fictitious loads will be given. The ap
proach corresponds to the dual load method [10] based on the initial 
stress method [111 and the residual force method [121. Fictitious loads 
are used to modify structural behaviour according to actual properties 
of elements ~n the collapse process. The description is given for a 
one parameter load process for a deterministic structure. Proper modi
fications necessary for the reliability analysis will be presented in 
the next section. 
The state of equilibrium at the end of any i-th configuration is given 
in the form: 

/ 3.1 / 

where: 
Ki - stiffness matrix at the i-th configuration, 
~i - vector of displacements at the end of the i-th configuration, 
ai - load parameter at the end of the i-th configuration, 
£ - basic load vector, 
Ii - vector of fictitious loads at the i-th configuration. 

An inductive formulation of the problem is presented. For i=1 all ele
ments are working in the linearly elastic phase. Vector of displace
ments at the beginning of the configuration is ~ = Q and vector of 
fictitious loads is 11 = Q. Thus 

The load factor a1 can be found from: 

a1 = min g~ 
k 

/ 3.2 / 

/ 3.3 / 

where g~ is a relative length of the first phase of k-th element. Vec
tor ~1 can be found from /3.2/. 
Assuming that full solution is known for i = n then the following for
mulae can be derived from the continuity condition for i = n+1 con
figuration: 
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/ 3.4 / 

/ 3.5 / 

where liz is a change of the global stiffness matrix resulting from the 
change of element axial stiffness. The load factor is calculated ac
cording to /3.3/ for a positively definite stiffness matrix and accord
ing to /3.6/ for a negative stiffness matrix: 

n+1 an+1 = max gk 
k 

Vector of displacements for i=n+1 can be found from /3.1/. 
A mechanism is detected when 

det lii = .() 

/ 3.6 / 

/ 3.7 / 

however first some other possibilities must be rejected: pseudo-mecha
nism, temporary mechanism, hidden unloading. 

4. DISPLACEMENT DEPENDENT RELIABILITY ANALYSIS 

A one parameter load process described in the previous section is used 
in the limit state analysis being a basis for the physical interpreta
tion of the reliability analysis. In general there is assumed a con -
stant level of the load vector /fixed value of the load factor/, how
ever the load vector is random itself. This requires some modification 
in the formulation of the problem in the reliability analysis. A vector 
of fictitious loads is presented as a sum of vectors corresponding to 
the actual phases of each particular element. According to figure 6 
a contribution of the j-th element working in the i-th phase to the 
global vector of fictitious loads can be calculated from: 

/ 4.1 / 

where .£j is a global vector of directional cosines and all other quan
tities are shown in figure 6. Pi and di may be random. Correlation be
tween Pi and d i depends on the choice of basic variables. Usually Pi 
or di or both of them are expressed by means of some other basic random 
variables corresponding to the previous phases. 
Assuming that a unique relation between the phase number and the con
figuration number exists, the global formulation of the statical pro
babilistic analysis can be expressed in the following simplified form 
for the i-th configuration: 
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!.; l! = !: + L f~ / 4.2 / 
... j -~ 

where a curl N indicates random quanti ties and £.1 is a vector of the 
fictitious load from the j-th element in the i-th configuration. At 
any configuration there are sought parameters of the random displace
ment vector for the given load vector and corresponding vectors of 
fictitious loads. A detailed description of the full betn-unzipping 
reliability analysis can be found in [3). 
A great advantage of a piecewise linear model of element behaviour is 
that at any configuration all safety margins for all generalized fail
ure elements are linear. Let us consider the situation shown in fig
ure 6. Expression for the safety margin depends on data used for the 
description of the P-d relation. For the simplest case shown in fig
ure 6 this will be: 

M 
kilki_1,ki_2'··· 

where: 

= d i + aT ; + L 
-j - 1 

T -1 b l . f. 
- J -J / 4.3 / 

a. - a vector of the influence coefficients for external load at 
-J 

the j-th configuration, 
~lj - a vector of the influence coefficients for the I-th ficti

tious load in the j-th configuration. 
All necessary correlations must be derived from the data available. 

5. STRATEGY OF THE ANALYSIS 

Existance of the strain softening leads to the unstable states of the 
structure. It is relatively easy to satisfy full compatibility of dis
placements in the incremental deterministic analysis. However, the re
liability analysis performed for the nonincremental load requires spe
cial strategy which will ensure logical consistency of structural be
haviour. In general no unique criterion exists for the direction of 
element displacements in the progressing process of failure, thus the 
following rules are applied. 
At any configuration each actual potential generalized failure element 
is considered. If the actual axial stiffness is nonnegative /ki ~ 0/, 
then a fictitious load is applied and both positive and negative sa
fety margins are calculated. R stands for resistance variables and S 
cumulates load influence: 

/ 5.1 / 
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Mi = Ri + Si / 5.2 / 
H 

Assuming that all basic variables are collected in a vector 1£ , the 
safety margin can be calculated as: 

/ 5.3 / 

where £ is a vector of the coefficients of influence. 
Let all basic variables be normally distributed, then they can be trans
formed to the standardized set of uncorrelated variables 

/ 5.4 / 

where Q is a linear operator and ~ a vector. The safety margin /5.3/ 
expressed by means of i has a form: 

~ T -1 H T -
M1 = £ Q / ~ - b / = A ~ + a o 

After normalization the reliability index P can be found 

FII = _1_ / aT z + a / = !l i +Jl 
IAI - - 0 

and used to calculate the design point: 

/ 5.5 / 

/ 5.6 / 

/ 5.7 / 

Design points and corresponding element displacements are calculated 
for both positive and negative safety margins. There are four possible 
situations: 
a/ axial element displacement at the design point is positive for both 

safety margines, thus the reliability index corresponding to the 
positive safety margin is chosen for the process of unzipping, 

b/ axial element displacement is negative for both safety margins -
- the reliability index corresponding to the negative safety mar
gin is chosen, 

c/ axial element displacements at the design points agree in signs with 
the safety margins - both reliability indices are considered and 
the smaller one is chosen, 

d/ the signs of axial element displacements at the design points are 
in contradiction with the assumed signs of safety margins - the 
failure of such an element is not considered. 

The further process of unzipping follows the standard way of the meth
od. 
For generalized failure elements with negative axial stiffness the 
approach depends on the determinant of the actual global stiffness 



www.manaraa.com

350 

matrix. If the determinant is positive then the calculations follow 
the scheme presented above for nonnegative axial stiffness. If both 
the axial stiffness and the determinant are negative then it is as
sumed that the given element terminates the configuration and no other 
failure elements are considered. 
To maintain the consistency of all failure elements with the actual 
state of the structure the signs of axial deformations of all elements 
are checked for the actual design points. If the inconsistency is de
tected then the given branch of the failure tree is rejected. 
A special modification of .the safety margin is required when the deter
minant of the global stiffness matrix is negative. Let two negative 
resistance variables belong to the same physical element and let be 
R2 < R1 < 0., Then, if det !1 > 0 the safety margin is 

M1 = -R1 + aT ;; -1 -

while for det 1£2 < 0 the safety margin becomes 

M2 = R2 - R1 + ~ £ 

6. APPLICATION OF THE APPROACH 

/ 5.8 / 

/ 5.9 / 

Different numerical experiments were performed to study the applica
bility of the proposed approach to the structures with strain soften
ing elements. Normal distribution for all random variables was assumed. 

Example 1. 

A simple fan truss subjected to the compressive load consists of three 
elements as shown in figure 7. Elements 1 and 3 are characterized by 
a linearly elastic - perfectly plastic model and element no. 2 is a 

I·' 
Figure 7. Fan truss under compression. 
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El. 1 & 3 

____ ~~~--~----d 

Figure 8. Element data. 

strain softening element as shown in figure 8. 
The following data is assumed: 
external load: S N I 100; 10 I 
element no. 1: k = 1000 

p 

d1 - }f 10.1; 0.005 I, d_1 - N 1-0.05; 0.004 I 
element no. 2: ~1 = 1000, k23 = -400 

2,49 

3 
0,00 

3 
2,81 

1 
0,00 

1 
0,82 

Figure 9. Failure tree at mechanism level. 
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d 1 - N / 0.1; 0.005 /, d_1 - N /-0.05; 0.002 / 

d_2 - N / -0.125; 0.019 /, d_3 - N / -0.175; 0.019 / 

element no. 3: k = 1000 

d1 - N / 0.1; 0.005 /, d_1 - N / -0.05; 0.002 / 

The correlation matrix for element no. 2 / d1 , d_1 , d_2 ,d_3/has a form 

1.00 0.00 

1.00 

symm. 

0.00 

-0.42 

1.00 

All other variables are uncorrelated. 

0.00 

-0.16 

0.89 

1.00 

A full failure tree obtained using the beta-unzipping method is presen
ted in figur~ 9. Each box contains a generalized failure element number 
and the corresponding reliability index. All branches were terminated 
when a mechanism was detected. The global system reliability index is 
E = 2.44. The failure tree presented in figure 9 was obtained for cal
culations without checking the design point. Introduction of the design 
point checkine led to the rejection of those branches which were ini
tiated by the reliability index equal to zero, which corresponded to 
an inconsistent mechanism. However, rejection of some branches did not 
change the global reliability index. 

Example 2. 

A simple regular space truss loaded with two concentrated forces shown 
in figure 10 was analysed. The analysis was performed for different 
P-d curves as shown in figure 11. All these curves had the same para
meters of distribution for all corresponding characteristic points. 

Figure 10. Regular space truss. 
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CD 

Figure 11. Different types of P-d curves. 

The purpose of the analysis was to find the global reliability indices 
assuming that for each analysed case the structure was built up of ele
ments characterized by only one P-d relation. The order in which the 
curves are presented in figure 11 from type 1 up to type 5 corresponds 
to the predicted order of reliability indices from the lowest to the 
highest. 
The following reliability indices were obtained after the proper mo
dification of the safety margins in the unstable range of the structure 

B1 =0.58 
B 2 =2.22 

B3 = 2.22 
.B 4 = 2.61 
.B5 = 2.59 

When classical formulation of the safety margins was used for det,K < 0 

there was obtainedB 3 = 3.42. Some inconsistency observed in the pre
sented results may be due to approximation applied in the whole process 
of reliability estimation. 

7. CONCLUSIONS 

The paper presents an attempt of taking into account the influence of 
strain softening which appears in truss members under compression. 
The beta-unzipping method has been used to perform the reliability 
analysis. A piecewise linear model of the strut P-d characteristic 
was applied. The beta-unzipping method has proved to be fully able 
to accomodate all reqUirements caused by a new element model. Special 
attention was p~ed to satisfy the consistency and compatibility con
ditions. It was possible to obtain results concerning the reliability 



www.manaraa.com

354 

of the whole structure, however it seems to be justified to look for 
closer relation between the results and physical interpretation of the 
phenomenon, especially in the unstable range. 
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Abstract 

PROBABILISTIC FRACTURE MECHANICS APPLIED TO THE 
RELIABILITY ASSESSMENT OF PIPES IN A PWR 

Th. Schmidt, U. Schomburg 
University of the Federal Armed Forces 

P. O. Box 70 08 22, D-2000 Hamburg 70 

A probabilistic fracture mechanics approach for the reliability assessment of pre
cracked pipes in a PWR subjected to cyclic fatigue is described. The principal 
model assumptions are given and three different numerical evaluation techniques 
briefly discussed. Finally the capabilities of the approach are illustrated by 
determining the relative merits of different inspection measures and schemes with 
respect to a safety increase of nuclear components. 

1. Introduction 

Nuclear Power Plants are highly complex systems. The assessment of their relia
bility with respect to different failure categories is a difficult and comprehen
sive ta~k /1, 2/. However, with respect to catastrophic failures, e.g. core melt, 
the reliability of rather few subsystems plays a dominating role. In a pressurized 
water reactor (PWR) such a subsystem is the primary coolant circuit, which mainly 
consists of the reactor pressure vessel, the steam generators, the main coolant 
pumps, the main coolant pipes and the pressurizer with the surgeline. 

In this paper the attention is focussed to the even smaller subsystems of the main 
coolant pipe and ~e surgeline. 

A quantitative reliability assessment for these pipes can obviously not be ob
tained from the rules of any regulatory codes, since these prescribe only certain 
quality standards to be obeyed. In addition, it is not possible to infer this 
reliability from available statist'ical data of operational performance. All ade
quate operational experience covers only some hundred years, which is nothing com
pared to the supposed failure probabilities. Furthermore, even this small popu
lation is rather heterogeneous, so that no specific features of a certain pipe 
under consideration are taken into account. The same is true for the regulatory 
code. In addition, the effect of changes in regulation rules, operating or design 
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parameters can be jugded qualitatively only, if at all. This awkwardness can be 

overcome - at least on a model basis - by the application of probabilistic 

fracture mechanics methods (PFMM). 

The PFMM approach is not applied to the pipe as a whole, but to each single 

failure element (or component) of the pipe, where the pipe is modelled simply as a 

series of failure elements. These failure elements are the welds of the pipe. 

This approach is justified by the knowledge that the overwhelming majority of 

failures for adequate designed welded steel components is caused by the imperfect 

integrity of the welds /3, 4/. These initial imperfections may lead to failure due 

to extreme overloads like for example earthquakes, but much more contributing to 

the failure probability is low and perhaps high cycle fatigue (vibrations) in the 
presence of a.corrosive medium. This failure mechanism can be described deter
ministically by means of fracture mechanics. The constituting variables of the 

fracture mechanics description as well as the initial situation (imperfection 

rate, size, location etc.) are of stochastic nature or may be assumed to be so to 
incorporate data uncertainty. This is taken into account by modelling them as 

random variables. 

2. Probabilistic Fracture Mechanics Model of a Pipe Weld 

Since the model is described in detail elsewhere /5/, it shall be summarized here 
only by giving the major assumptions. 

(i) The considered pipe weld is a circumferential weld. 

(ii) Failure occurs due to the propagation of crack-like flaws introduced 

during fabrication. Failure has to be distinguished into leak and break 

failure. 
(iii) 

(iv) 

No crack initiation and crack interaction takes place. 

Crack propagation is caused by the main load transients, i.e. cyclic 

fatigue. The crack growth may be stable or unstable and is a function of 

the present crack size. 

(v) The initial crack distribution can be obtained form the results of ultra-

sonic testing. 
(vi) For the crack growth calculations all flaws are transformed in a conser

vative manner into semi-elliptical surface cracks at the inner side of the 

weld, i.e. exposed to the corrosive coolant (cf. figures 1 and 2). 
(vii) During stable fatigue crack growth the crack remains a semi-elliptical 

surface crack. Crack growth can take place simultaneously in depth and 

length directions. 
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(viii) Initial crack depth and length-to-depth-ratio as well as all other initial 
random variables are distributed independently. 

(ix) The probability of detecting cracks at ultrasonic inspections is a 
function of the present crack size. Subsequent inspection results are 
independent. 

(x) Cracks found by non-destructive examinations or leakage tests are repaired 
immediately. 

The model characterized by assumptions (i) to (x) can in principle be completely 
deterministic (e.g. dirac distributions for every random variable) or completely 
stochastic. Usually it is constituted by a mixture of random and deterministic 
variables. Typically at least the following variables are taken to be random 
- crack occur~ence rate 
- crack size distribution, given a crack is present 
- functional parameters in the stable and unstable crack propagation relations 
- crack detection rate by ultrasonic inspections. 

figure 1 - Transformation of an elliptical embedded crack 
into a semi-elliptical surface crack. The depth 
and depth-to-Iength ratio remain constant 
~a = 2ao and ao/bo = a/b). The location depth 
1S deno~ed by ~. 
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figure 2 - location of transformed crack and pipe 
geometry parameters 

3. Evaluation of Failure Probabilities 

In this section we will start with some general remarks on calculating failure 
probabilities based on the model given before. Then three possible numerical 
approaches are briefly discussed. 

3.1. General features of the model 

Since we assumed no crack interaction to take place, the failure probability of a 
component containing N cracks is given by 

(3.1) 

where GC is the failure probability of the component conditioned on the presence 
of exactly one crack in the component. If the frequency of cracks in a component 
is Poisson distributed, as it is often reasonably assumed, the unconditioned 
failure probability of the component is given by 

Q = 1 - exp(-M GC) (3.2) 

where M is the expected number of cracks in the component according to the Poisson 
distribution. 
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Thus, in this case we need only to determine the conditional failure probability 
Oc and we will therefore restrict our attention in the remainder to the problem 

of estimating Oc. 

In eqns. (3.1) and (3.2) we tacitly assumed Oc to be defined for some time 

period T. This period T is usually the projected operating time, i.e. length of 
design life. Since T may be a design variable we shall write more precisely 

Oc(T) instead of Oc. It is further important to notice that like most often in 
reliability considerations not only Q(T) but Q(t) for any t between 0 and T is of 
interest. These informations are of great relevance for example to insp~ction 
strategies. Thus we like to determine Q(t) as a function of t over (O,T). In 

practive Q(t) is a non-decreasing function, at least from some time te on. 

~IDW is Q(t) related to the set of model variables? Let X(t) denote the vector of 
model variables a time t, g(X) a safety margin or failure function, i.e. g is a 
real valued function with g(X) ~ 0 denoting failure, while g(X) > 0 means no 

failure, then Q(t) is the expectation of the set function 1(g(X) ~ 0) 

(3.3) 

If C denotes the vector of all deterministic model variables (assumed to be time
independent) an Y denotes the vector of all random model variables and given that 
Y is absolute continuous for every t regarded, i.e. has a density function ft(y), 
eqn. (3.3) becomes the well known form 

Q(t) ~ ft(y) dy (3.4) 
g(c,y(t)) ~ 0 

Fortunately only some of the random variables alter the distribution in time, e.g. 
typically the crack depth and length-to-depth ratio distribution, while the other 

distributions remain unchanged. Let u = (u1, ..• ,uk) and v = (v1' .•. ,vm) denote 
the time-independent and time-dependent random vectors respectively and f(.) their 
corresponding densities, then (3.4) becomes of the form 

Q(t) ~ f(u1) .•• f(uk)ft(v1, .•. ,vm)du1 .•• dukd(v1, ..• ,vm) (3.5) 
g(c,u,v(t)) ~ 0 

Sometimes it is explicitly possible and then often more appropriate to take into 
account the time-dependency of some variables not by altering their distribution 
but instead letting the g-function change equivalently in time, which leads to 
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Q(t) J" f(u1)···f(uk) f(v1)···f(vm) du1···duk dv1 ••• dvm (3.6) 

gt(c.u.v) ~ 0 

instead of (3.5). This formulation is preferable especially when the distribution 
of V changes to a mixed type distribution. i.e. points or lower-dimensional sub
spaces of Rk are having a non-zero probability mass. The integral of (3.5) has 
to be written then in a more general form. 

In the following sections we will restrict ourselves to the case that only the 
crack size variables and optionally parameters of the crack propagation rules are 
time-dependent. 

3.2. Monte Carlo Simulation 

Since Q(t) is the solution of a higher dimensional integral over a complicated 
integration region and furthermore the integration region or the integrand are 
time-dependent, the Monte Carlo approach to solve eqns. (3.4), (3.5) or (3.6) is a 
most natural choice. To allow a better illustration of the numerical evaluation we 
rewrite (3.6) in the form 

Q(t) = J" Pf(t/(a.r)) f(a) fer) dr da 
S 

(3.7) 

where Pf(t/(a.r)) is the failure probability up to time t of a crack with given 
initial depth a and depth-to-Iength ratio r and S is the space of all possible 
initial crack sizes. 

The integration is solved by providing estimators of Pf(t/(a.r)) for a usually 
large sample of (a.r)-values and some previously chosen evaluation times to' 
t 1' .••• t e with a Monte Carlo simulation. The simulation is carried out for 
every (a.r)-value by sampling an event sequence'(transients. inspections. leakage 
tests'etc.) with corresponding event occurence times and realizations of the 
random variables associated to these events. Then the crack size variables are 
up-dated Eccording to this event sequence and event times and it is noticed 
whether the crack has failed (exceeded some critical size) or not until some time 
t i • given that it has not been detected by previous inspections. Denoting the 
failure or non-failure of an initial crack (a.r) at time t by an one-zero-variable 
I(t/(a.r)) and the probability of non-detection of the crack until time t by 
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PND(t/(a,r)) (3.8) 

where Tj denotes the j-th inspections time in the event sequence, it is evident 

that 

Pf(t/(a,r)) = I(t/(a,r)) • PND(t/(a,r)) (3.9) 

is an estimation of Pf(t/(a,r)). When no inspections are modelled this procedure 
is a direct simulation of binomial sampling. 

Details of such a Monte Carlo simulation for the pipes under consideration are 
given e.g. in IS, 6/ and shall not be elaborated here. It is important to remark 
that the sampling of (a,r) should in general not be performed according to their 

original distribution with regard to the expected small probabilities. Necessary 
to obtain efficient simulation procedures and results of sufficient accuracY"is 
the employment of variance reduction techniques like importance sampling or 

stratified sampling. Both methods have been successfully applied to the problem 

formulated here /7/. 

3.3. Markovian Crack Propagation Evaluation 

According to the aforementioned assumptions the crack growth and crack detection 

rate associated with a load transient or inspection respectively is depending on 
the actual crack size but not on the crack sizes of earlier transients or inspec
tions. This property is already used in the simulation procedure (cf. section 3.2) 

and it obviously forces the crack propagation process to be markovian. 

In the context of markov process theory our problem can be formulated as follows: 

Given the state space S of all possible crack sizes with initial probability mass 

function Po and the event space E of all load transients, inspections and repair 
measures with all their random and deterministic properties, which each defines a 

transition probability function Pe , what are the values of Pt(leak) and Pt (break), 
where the failure states leak and break are adequately defined subsets of S and 

Pt is the probability mass function belonging to time t? 

For a pipe of wall thickness h and inner radius R we have S being the subset 
(O,h) x(O,1) where air <DR is satisfied (cf. figures 1 an 2). The probability 

mass function Pt can be easily derived by a recursion formula from Po and the 

set {~ : ecE) , when the event sequence is fixed and the corresponding load and 
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inspection quality variables are individual constants for every event so that we 
restrict our considerations to this case here: 

to = 0 (3.10) 

tj ~ t < ti+1 

where ti is the time of the i-th event ei and the meaning of the operation @ 
is given by 

Pt ® Pe(A) = ~ Pe(A/(a,r)) dPt(a,r) 
S 

If Pt , Pt ahd P have the probability densities fl" f 1'_1 and 
i-1 ei 

fe respectively, (3.9) is equivalent to the more famous relation 

J fe((u,v)/(a,r)) f i _1(a,r) d(a,r) 

S 

(3.11) 

(3.12) 

Unfortunately eqn. (3.12) has usually no analytical solution so that numerical 
integration schemes must be employed, which provide pointwise estimations of f i . 

But fi has to be known completely to obtain fi+1 so that a fitting procedure 
has to be carried out or, alternatively a recursive numerical integration scheme 

based on always the same points has to be used. Furthermore the probability mass 

functions do not continue to possess densities so that several cases have to be 

distinguished. All these difficulties can be overcome by discretizing the state 

space S into several parts and approximating fi by a sum of weighted uniform 

densities or dirac distributions. Then Po becomes a probability vector, each 

Pe a transition probability matrix and the recursive formula (3.10) means simply 

a series of matrix mUltiplications. However, the matrix elements of each Pe have 
to be obtained usually still by numerical integration, but only once for all. The 
markov process is thus approximated by a homogeneous markov chain. 

3.4. FORM / SORM 

The so called first or second order reliability methods have not been dealt with 

by the authors for the problem under consideration, but shall not be unmentioned 

due to their increasing importance and potential. The first idea of these concepts 

was appearingly formulated by Cornell /8/ and it has been further elaborated 
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namely by Ditlevsen and Rackwitz (for historical remarks see e.g. Ditlevsen /9/). 
Its basic idea can be illustrated for our problem by regarding eqn. (3.5). The 
integration is solved by linearizing the failure function g at the so called 
design-point and replacing the original distributions by normal distributions of 
the same expectation, variance and covariance and identical density value in the 
design point. Then the such derived integration problem can be solved by analy
tical approximation formulas. The design-point will be found by an iteration 
procedure at least when some regularity conditions are met /10/. In SORM g is 
approximated by a second order Taylor expansion. 

FORM/SORM can be applied at every time t, if the distributions are known at this 
time. Since their dependence on time may be very complicated, e.g. they may be a 
product of a ~rkov process as outlined in section 3.3, this is no trivial condi
tion. However, if it is possible to approximate them as a function of time or to 
express g as a function of time and the initial random variables (eqn. 3.6) the 
FORM/SORM-approach is very versatile. Recent works seem to indicate the capability 
of the method to solve some of those time dynamic problems /11, 12/. 

3.5. Common Considerations 

All three methods have their respective merits. FORM/SORM requires some amount of 
previous work to gather information to be able to formulate the problem in appro
priate manner, but if possible the method is very exploitable, since it does not 
only provide an approximative result of the sought failure probabilities but also 
approximative sensitivity measures (cf. e.g. Bjerager /13/). However, no bound
aries for the approximation errors are given, but comparisons with Monte Carlo 
results show usually good agreement. An advantage is certainly the ability to deal 
with correlated random variables. 

The markov chain approach can handle correlated initial random variables of the 
state space components only. The concept ist rather simple and easy to implement, 
if the event history is not too complicated. It is computational very efficient, 
if the discretization is adequate. Furthermore a lot of information gathered can 
be used again for the solution of additional but related problems. So far no 
estimates of the approximation errors are provided, but they may be obtainable in 
principle. However, crosschecking of the results with Monte Carlo estimations 
showed usually acceptable accuracy. Often the approximation can be carried out 
such that upper bounds of the failure probability are provided. 
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The Monte Carlo simulation is probably the conceptual simplest one, although per
haps computationally not efficient even if variance reduction techniques are em
ployed. This is particularly true, when correlated variables shall be dealt with 
(if at all practicable). On the other hand since statistical error estimations are 
provided, the approach will retain its significance at least as a check or cali

bration method for the other techniques. 

4. Application to Piping Reliability 

This section is meant to illustrate the application of a probabilistic fracture 
mechanics model as outlined before in some numerical examples rather than to give 
a thorough reliability assessment of a piping system, which for example is done in 
/5, 6/. We therefore concentrate on the specific aspect of inspection measures. 
The most important inspection measures are 
- ultrasonic testing (UT) 
- hydrostatic proof test (PT) 
- leakage test (LT) 

Ultrasonic testing of the welds is performed manually or automatically before the 
plant starts operating (pre-service) and periodically during operation (in
service). According to german regulations the in-service ultrasonic testing (ISUT) 
is repeated every four or eight years /14/. As assumed in section 2 the proba
bility of non-detection is a function of the crack size. For the following calcu
lations a simple generalization of the function found by Marshall /15/ is used: 

PND(a) = (l-e) exp(-0.1134 a) + e (4.1) 

where a is the crack depth in mm and e is a free parameter, that is a measure of 
the quality of the inspection affecting mainly the chance to detect very deep 
cracks, which are the most critical (cf. figure 3). Here e = 0.005 was chosen. The 
influence of the choice of e combined with different inspection frequencies and 
times when only UT is applied was investigated in another paper /16/. 

Contrary to UT the hydrostatic proof test and the leakage test are destructive 
examinations. In both cases the pipe is pressurized at a temperature which is high 
enough to avoid brittle fracture, but low compared to the operating temperature so 
that it is commonly noted as cold pressurization. The pressure is about 1.3 times 
the design pressure of the pipe for the PT and the maximum normal operating 
pressure for the LT. The pressurization might cause existing cracks to grow stably 
or unstably through the wall resulting in a leak or break. But such failures are 
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not critical with respect to the operating conditions and should therefore not 
account to the failure probability. These leaks and breaks are thus treated 
equivalently to cracks being detected by UT. Consequently this does mean a 
beneficial effect of these tests. On the other hand the pressurization is a load. 
which causes uncritical cracks not to fail but to grow further and be therefore 
perhaps more likely to fail in the critical phase of an operating transient. Thus 
PT and LT also have an antagonistic effect. This is especially true for the LT. 
since it is performed before every regular heat-up/coo1-down cycle of the plant. 

i.e. in average 200 times in 40 years projected plant operating time. The PT is 
carried out once as a pre-service measure and may be repeated according to the 
KTA-Rege1n /14/ every eight years. There has been discussion in Germany about the 
question whether the beneficial or harmful effects especially of the LT are 
prevailing. si~ce for example no LT is performed in U.S. PWR's. The answer to 
this question with respect to the failure probability of the main coolant pipe is 

given by the following results. 

PND(a)r----------------------------------------------------, 

0.1 

0.01 

PND(a) 

o 

figure 3 
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0.1 

0.05 

(l-e) exp (-0.1134 a) + e 
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[mm] 

probability of non-detection function according to 
/15/ for different e-va1ues 
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The calculations are based on the pipe data presented in /5/. The stable crack 
growth relation was a randomized ASME-curve for low alloy feritic steel in 
corrosive environment /17/, while unstable crack growth was due to exceedance 
of the critical net-section flow stress. 200 heat-up/cool-down cycles equally 
spaced in time were performed in the simulation. All material and other data 
except inspection parameters were identical in the cases considered. 

In figure 4 the leak probabilities Q(t) are shown for five different situations: 

C1: no inspections are performed 
C2: pre-service UT and PT are performed 
C3: pre-service UT and PT are performed and the UT is repeated every eight 

years • 
C4: pre-service UT and PT as well as periodical ISUT after every four years are 

performed 
cs: like C4, but additionally a leakage test before every heat-up/cool-down 

cycle is carried out 

Q(t)~------------------------------------------------, 

o 10 

figure 4 

20 ';0 40 t 
raT 
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Since the curves C4 and C5 nearly coincide even numerous leakage tests appearingly 
have no influence on the leak probabilities, when they are combined with repeated 

ultrasonic testing, which is the realistic case. If no inspections or only leakage 
test are performed, virtually the same is true (not shown in figure 4). UT on the 
other hand has a tremendous beneficial influence on the leak probability, espe

cially when performed early during life-time. This is due to a substantial change 
of the initial crack size distribution, which probably is the most sensitive 
variable (cf. e.g. /18/). Repeated ISUT seems to force to nearly vanish the con

tribution of crack growth to the leak probability at some time. However, to con
clude that a concentration of ISUT only in the first years provides the highest 
reliability is not justified, since then the independence assumption of subsequent 

UT is certainly not valid. 

In figure 5 the break probabilities are shown for the same situations as in 
figure 4. The results are very similar. The benefits of inspections are even more 
pronounced and in contrary to figure 4 the leakage tests have a positive in
fluence now. 

Q(t)r-------------------------------------------------~ 
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figure 5 



www.manaraa.com

368 

In figures 6 and 7 the efficiency of the different inspection measures with 
respect to the break probabilities as a function of time are further investigated. 
Besides the case Cl as a reference curve the following situations are modelled: 

C6: only pre-service PT is performed 
e7: pre-service PT and UT are performed 
e8: pre-service PT and UT plus 200 LT's are performed 
C9: like C8, but with four additional in-service PT's, carried out every eight 

years 

el0: pre-service UT and nine ISUT's are performed 
ell: like C10, but with additional pre-service and four in-service PT's plus 

200 LT:s performed 

Q(t) 

10-9 

o 

figure 6 

10 20 30 40 
t 

raj 
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It can be seen that a pre-service PT has some positive influence, which is 
markedly enhanced by simultaneous pre-service UT. The performance of leakage tests 
decreases the break probability further, while additional proof tests seem to be 
of no significance. On the other hand it is obvious that UT alone cannot provide 

the same benefits as together with pre-service PT and regular leakage tests. 

QCt) 

10- 9 

o 

figure 7 

10 

C1 

20 30 40 

Thus it can be concluded that the performance of leakage tests is a reasonable 
measure to reduce further the failure probability, in particular in combination 
with ultrasonic testing. 

s. Conclusions 

Probabilistic fracture mechanics has been shown able to provide reliability 
estimations of a pipe component containing initial cracks. Although due to data 
uncertainty and model restrictions no absolute values or strict confidence limits 
can be determined, careful modelling may provide upper bounds of the failure pro-

t 

[a] 
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bability and futhermore important insight in the effects, efficiency and limits of 
changes in design, operating and inspection variables is obtained. For the pipes 
of a PWR the great relevance of the three most important inspection methods 
practiced so far in order to increase the reliability of nuclear subsystems has 

been demonstrated. 
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1. Introduction 

THEORETIC INFORMATION APPROACH TO 
IDENTIFICATION AND SIGNAL PROCESSING 

Kazimierz Sobczyk 
Institute of Fundamental Technological Research 

Polish Academy of Sciences 
Swietokrzyska 21, PL-OO-049 Warsaw 

In his pionieering work on the theory of communication systems Shannon 
showed that the concepts of entropy and mutual information are extre
mely useful and effective for evaluating the performance of communica
tion systems. The fact th~t these concepts are so effective in commu
nication theory is, very likely, responsible for the fact that the 
information theory is often considered as synonymous with communica
tion. theory. This.may also be a reason that relatively few conclusive 
results have been. obtained in other fields.with. use of the information 
theoretic approach. 

A correct point of view, as it has been underlined by Kullback [1] is 
that the information theory is a branch of mathematical probability 
theory and mathematical statistics. As such., its concepts and methods 
are applicable to. analysis of various physical and engineering sys
tems. Theoretic-information reasoning is well known in physics, espe
cially in thermodynamics where the relationship between the amount 
of information on physical system and its thermodynamical entropy is 
well. estabilished (cf. [2J ). 
Information theory is especially relevant to data processing and sta
tistical inference. As a matter of fact, an information in a techni
cally defined sense was .first introduced in statistics (R.A.Fisher -
1925) in his work on. theory of estimation. His concept of a measure 
of the amount of information supplied by data about unkno,wn parameter 
is well known to statisticians. Generally speaking, the aparatus of 
the information theory is applicable to any probabilistic system of 
observations since. whenever we make statistical. observations (or 
design and. conduct statistical experiments) we seek information. The 
basic questions which arise in this. c.oD.text are: 
how much information.canwe infer from a particular set of observa
tions or experiments about. the sampled. phenomenon (population) ? 
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More particular problem concerns estimation of an unobserved quantity 
X through observations on another quantity Y; these quantities can be 
random variables, stochastic processes, random fields etc. 
Another question is concerned with optimal design of experiment: how 
should an experiment be designed to obtain maximum information about 
the sampled random phenomenon ? 

The objective of this paper is to show how the information-theoretic 
approach can be adopted to such problems as: identification of empi

rical systems, random signal processing and to optimal design of expe
riments in stochastic dynamics of engineering systems. 

2. Entropy and mutual information 

An inherent feature of any random phenomenon is that a result of its 
observation can not be predicted a priori (before observation). This 
uncertainty (or indeterminancy) can often be evaluated qualitatively 
by comparison of different random quantities. A convenient quantita
tive measure of uncertainty of real random phenomena is a certain 

function of probabilities which is called ~n!r£P~. 

Let (~~P) be a basic probability space and let K(i) be a random 
variable in R,,; "te r. 
Entropy of a continuous random variable K(f) with probability density 
f(~) is defined as 

H(~) = - SfC=rJlo,f(!JcI! =. <-lo~ f(~) (2.1) 
R,. 

where <.) denotes the average value. 
Let X(t) and yet) be two scalar random variables with the joint pro
bability density f(x,y). The average conditional entropy of X(f) with 
respect to yet) is defined as ...... 

Hy (X) = ~[if(JC'J) f()~ f(x/y)dxt/y 

It can be easily shown that 

H (X, Y) :: H(x) + ~ (y) 
:: H (y) of- Hy (X) I 

H(X, y)~ H(X) + H(Y) 

(2.2) 

(2. J) 

(2.4) 

where equality holds if and only if the random variables are indepen
dent. The entropy of n-dimensional Gaussian vector X(t) is given by 
the formula 
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Often we have to do with situations where random variable !(~) is un
observable, but the variable Y(r) associated with X(t) can be observed. 
The information about X(t) provided by the observation of yeT) affects 
(decreases) the uncertainty (entropy) of X(t). This suggests the follo
wing definition. 
The Shannon info£m~tio~ I(X,Y) about X(t) provided by the observa
tion of yet) is 

T(X. Y) == H(X)- Hy(X) 

= H (X) I- H{Y) -H(X, Y) 
For continuous random. variables 

I t') f-oJoo /; {(x, Y) r/; e/. 
lX.Y =- f(",y) 09 £(If){/J) X"J' 

___ 00 

where f1 (x) and f£(Y) are the marginal distributions. It is known 
that 

(2.6) 

(2.7) 

a) I(X,Y)~ 0 , equality holds if and only if X(t) and yet") are 
independent 

b) I(X,Y);I(Y,X), 
c) I(X,Y) I(X, g(Y)) • where. g(y) is any mapping defined on R ; 

eq.uali ty holds if and .. only if the mapping 
g{y) is one-to~one. 

Several generalizations of the Shannon measure of information have 
been.suggested in statistics (cf. [3] ). There is an interesting rela
tionship between the Shannon information measure I(X,y) and the Kull
back-Leibler measure of divergence. Let us assume that f1 (x) is un
known true probability distribution (of a random variable X(~) and 
f 2 (x) is a certain hypothetical approximation of f~(x). 
The Kullback-Leibler .£i~e£g!n£e of flex) from f 1 (x) is defined as 

"" J [ftJ = r £ (Ie) loCI :£.0... ax 
fl. ) .... 1 q f.2. (x) 

(2.8) 

In order to relate the Kullback-Leibler measure (2.8) to the Shannon 
information (2.7) it is useful to consider the problem'. of identifica
tion of an unobservable variable X(o) on the basis of observation 
of another variable yet) which is statistically related to X(t). 
The Shannon measure of information about. the true value of x(t) when 
Y(r) is observed is given by (2.7). Assuming in (2.8) f~(x);f(x,y) 
and f2(x);f(~)f(y) we have 

. - DO 

J[~J= Jrt(~~~l)J= I(X,Y) = r Sf(x,y) to, t~xl~) dxJy (2.9) 
_00 _..0 

It is clear from (2.7) and (2.9) that the Shannon amount of informa-· 
tion about xCi) provided by observation of yet) can be regarded to 
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be equal to the Kullback divergence between f~(x) fz(Y) and. the joint 
distribution f(x.y). 

Another quantity related.to I(X.Y) and J 

introduced.by Kerridge [4J and. defined as 

Aft] = - (f:(l() lo~ £.(J<)d~ -- (2.10) 

By virtue of (2.1).(2.8) and (2.10) one obtains the following relat-
ionship _ 

A[:(.(:',] =_~(1()lo3f,(Jt)dx 1" Jf,(x)/03 f,CIt) c/x T,)_ _ _ 1 fz,{X) 

= H [ ft (x)J + J [::J . 
where I.J [hC">]' denotes the entropy of the distribution [, (It) • 

(2.11) 

The inaccuracy (2.10) is non-negative and and additive quantity. If 
f., (x) represents true probability distr.ibution of a random variable 
x(t) and f~(x) is an approximation.off~(x) based on some inaccurate 
knowledge of X(t). then - as it follows from (2.11) - the inaccuracy 
measure A[ f:J can be .. regarded as a measure of total uncertainty of 
X(t) which occurs due .to its inherent randomness (entropy of f~(x» 
and because .. of inaccuracy of .. our_knowledge .of the true distribution. 

3. System identification 

3.1. Informational quality criterion 

The concept of system identification is not univocal in the literature. 
Often "identification" is identified. with "modelling". In both cases 
one wish to find a model of a considered real system which would be 
the best in the sense of assumed quality criterion. A quality of a 
model is characterized by functional Q(Y.YM) defined on the output 
of the real system Y and on the model output Ynjthe quality criterion 
selects from all admissible models such a model for which functional 
Q(Y.YM) takes extremal value. The identification criterion expresses 
how close should be the model to the true real.system and it is a key 
issue in identification. Most often the root mean square error(between 
Y and YN ) is taken as quality criterion 'cf.[51 .[6] ). 

It seems that more . general optimality cri.teria would be useful. espe
cially if.on.e deals .. with. complicated systems. The informational cri
terion appears.to .. be very promising. It can be formulated as: 
a model MD should be selected from the class {Mlof the admissible mo
dels in such a way that the model.output YM contains maximum informa~ 
tion (in the Shannon sense) about the real system output Y. that is: 



www.manaraa.com

Q (y, Y,,) 

377 

= I (y; y;,) = < lo~ fCY'Y#1) > 
£CJ)f,JJH> 

'= (loq F6/YHJ) _ 
d f, (J) - ma.x 

(J.l) 

Since the model output Y,., depends on the model.input XM that is in 
the simplest case Y/'1 =:gCXM) then due to basic properties of the mutu
al information 

I (y, Y,.,) = I (Y, ~ (x,.,)) ? I (y, XH ) (J. 2) 

If there are the reasons for.assuming that the jOint distribution of 
the system response and the model response is Gaussian then 

I(Y,~) = -tlo~[1-~~(y,y")] (J.3) 

where ~(Y'YH) is the correlation coefficient of Y and YH • 

3.2. Model entropy 

Since the entropy characterizes an information content (prior experi
ment) it can be used for judging of the model quality. In this context 
it is instructive to know what is the.relationship between the entro
pies of the model output Y", and .. the model input X", • 
In the simplest situation of a linear model 

where 1M and !H are random vectors and A is a matrix we have 

Let us consider now the following differential equation model of a 
dynamical system with random initial conditions 

:;'1 = Ff[,(H(f)"""1 -r;;"'(i>] , '("ft.)= tH(t) , i:f,"".~", (J.6) 

Assume that functions FL and probability density f(~ ••••• y~) have 
partial derivatives with respect to Yf ' •••• yn and t and that the pro
ducts f~ are equal to zero if any of variables ~ ••••• y'" assumes 00 

or - 00 • 

Entropy of model (J.6) is (let log=ln) H (~) = - < In f>· 

d~it) = -(1t In.f) = -<; (~*j. +~) 
-J.{ (~~j,)-!y' ... Jy.. -I~4<f.··41. 

(J.7) 
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Making use of the theorem on differentiation of integrands,we conclu
de that the second integral on the right-hand side is equal to zero. 
Substituting Yj, = Fi. (i=l,2, ••• ,n) into (3.7) we have 

d H (f) If [.0 i""r.\.J! 
-df = -L '" ~ F. dy," ·efJ .. 

"=1 fQJ, ' _... _eo 

(3.8) 

Due to the assumption on 
integration by parts) 

behaviour of fF, at infinity we obtain (after 

_~.o ~f. Ff J]j 

~.o 

( "i)t:.. d 
= - ) f rQ '. 1;J, __ 'J. 

As a result we obtain the following differential equation for the 
entropy of the differential dynamical model ().6) 

Inthe case of linear differential model 

d~;m t- L aile (t) Y =0 
k=1 k 

equation ().lO) is 

cI H(+) --;;rr- = 
1'1 -La,., (of) 

k=1 

(3.10) 

().ll) 

().12) 

~~m~l~. Let us consider a harmonic oscillator with random initial 
conditions 

Denoting: 

From (3.12) 

and finally 

yet) "',.13(0 Y + c.J"z- y = 0 

y(t,,) .:: y. ('I), y(t.) = Y,(Y) 

y=x, y=y,t, != [y., , yl.] 
Y,-~=O, 
ii +-.f3 (t) 'tl. .,. c.>: 'r.; := O. 

we obtain 

d ~~(/;) = -flu) I 

1; 

we have 

II a ):= H. .:: H['r.M] r-rr· " r. (I) 
Hy (ol) = Hy (I .. ) -1 j?;{-$) J-1J 

- - 4 

(3.1) ) 

().14) 

It is seen that entropy HZ(t) monotonically decreases as t~ 00 if 
and only if 

L t5le·,· (I) > 0 . () .15 ) 

,'=, 
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4. Signal processing 

4.1. Maximum entropy spectral estimation 

In the characterization of a second order weakly stationary stochas
tic process, use of the spectral density is often preffered to the 
autocorrelation function, because a spectral representation may re
veal such useful information as hidden periodicities or close spect
ral peaks. In using the spectral .. density to characterize the process 
however, we have to construct a reliable estimator based on a finite 
length of data. 

During long time most of .the procedures used for estimating the spec
tral density of a stochastic process were based .on the classical work 
of Blackman,and Tukey[7]. According to this method, the available 
time series is first used.to estimate the sample autocorrelation 
function for a number of lags, and then the estimate is multiplied 
by a window function that goes.to zero beyond the largest available 
lag. Next, the Fourier transform of this product is determined to 
obtain an estimate of the spectral. density. Statistical stability of 
this procedure and the. results depend on the choice of the window 
function, and a significant effort.has been made to determine a good 
window function. 

Another procedure is based on the s07called periodogram, which is de
fined as the squared amplitude of the Fourier.transform of the avail
able time series. This approach has become rather popular especially 
after introducing the fast Fourier transform algoritm for performing 
discrete Fourier transformation (cf.CS]). However, use of the fast 
Fourier transform requires a periodic extension of the data, thereby 
inserting periodicities in the spectrum which may not exist in the 
data. Furthermore, as in the Blackman-Tuckey procedure, spectral den
sity estimation based on the periodogram involve the use of a window 
functions which are independent of the properties of the stochastic 
process being analyzied. The windowing problem may be particularly 
accute if the available. time series is very limited in length. 

The windowing problem essential in the above linear procedures (linear 
- since they only involve the use of linear operations on the avail
able data) may be overcome by using the maximum-likelihood method or 
maximum-entropy method (these methods are said to be nonlinear,since 
their construction is data-dependent). The first who introduced the 
concept of maximum entopy into the field of signal processing was 

Burg[9] • It seems,however, that the advantages of this approach have 
not sufficiently been put in use. 
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Suppose that we are given 2n+l values of the autocorrelation function 
of a weakly stationary random process. X(t) of zero mean. 
We wish to obtain a spectral density estimate. which corresponds to 
the most random (or most unpredictable) time series whose autocorre
lation function is consistent.with a set.of known values. Of course, 
this condition is equivalent to an extrapolation.of the autocorrela
tion function of the available .time series by maximizing. the entropy. 
Thus, this method avoids such assumptions as periodic extension of 
the data or that.the data outside of. the. available record length is 
zero. 

Let us introduce the entopy rate (cL [lOJ ) defined as 

h = tt'm, J:L II....... l'li'1 

(4.1) 

For Gaussian random process the entropy rate (or 
(ef [101) 6 

entropy density) is 

k = 4~ S lo~ Cjx (Y) Iv + to~ (2Jre)~ 
-6 

(4.2) 

where gjc.» is the spectral density of the.process 
., 

and 8:. 2.".t is the 
bandwidth of. the process; "'=211'v. 
Expressing g;r(~) in terms of the .. autocorrelation function of the 
process (exactly, of.its discrete counterpart) Kx(k) we have 

h = ..:L floa [E t<x(k) e;<P(-"2ffy/<tdJ]t/,; I-Ioq{l"e)~ (4.3) 
4~ (/ Ic=-oo (/ 

-6 
Following the principle o.f .maximum entropy, h is now maximized subject 
to to the constraint that g~(y) is consistent with the known autocova
riance Kx'k), 'k'~n+l. The variational problem to be solved reduces 
to 

=0 llel,:,. 12+1 (4.4) 

Carrying out differentiation one finds that the conditions for the 
extremum 

I I k I ~ M1 

where g~(v) is the spectral density estimate constrained by (4.4). 
After appropriate transformations. the final result is 

a (v) - ~ (4.6) 
d;c - B /1 + t 0.." e1p(-.z"{)IkAf)/~ 

where p~ is a constant and the coefficients ak are determined from. 
the data. More exactly, p~ is the output power of a prediction-error 
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filter of order n. and ak .k=O.I ••••• n are the corresponding filter 
coefficients. B is the bandwidth of the random signal X(t). and ~t 

is the sampling period equal to t~ • Quantity (4.6) is termed as the 
maximum-entropy spectral density.estimate. 

It is clear that the value of a spectral estimate is dependent on the 
observations of a random signal; for new sets of measurements the nume
rical value of the estimate changes. It is important to find the mean 
and variance of the estimate and the covariance between values of the 
estimate at two different frequencies •. These proper.ties determine the 
degree of statistical stability of the ~articular estimator. 
It is difficult to obtain general analytical expressions for the sta
tistical properties of. the maximum~entropy estimator. However. its 
asymptotic .pvoperties can be determined. It is found that the maximum
entropy estimate is asymptotically .. normal and asymptotically unbiased. 

4.2. Optimal sampling of space-varYing signals 

If a random signal of interest depends both on the spatial and tempo
ral variables (it is modelled as a random field) then an important 
problem is concerned with the best (according to the suitable crite
rion) distribution of sensors in the spatial domain. The use of an 
array of sensors.for determining the properties of random fields is 
known in various applications. For example. in seismic applications 
the requirement is to use an array of sensors to facilitate the dis
crimination between earthquakes and underground nuclear explosions. 
In radio astronomy an array of some number of discrete antennas may 
be used to determine the intensity.of radiation of some specific fre
quency.reaching the.earth from various regions of the sky. 

Similar problem occurs in acoustical applications. especially in acous
tic diagnostics of machines where the signals are the acoustic wave 
fields. In order to rationalize the diagnostic experiments it is im
portant to study the problem of optimal spacing of microphones which 
register a random acoustic.fieldgenerated by machine. 
In stochastic structural dynamics we usually assume that random forces 
acting on structural element. as well as random displacements. stresses 
etc. are spatially-temporal random fields •. Important problem which 
arises .. is: how to design. the experiment to obtain best knowledge on 
the random._field under. consideration on the basis of measurements in 
finite number of.points. What should be a number of sensors which are 
necessary for obtaining sufficient information on random vibra~ory 
fields and - in particular - what should be their distribution in 
spatial domain. 
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The problem described above can be formulated with use of the infor
mation theary. It is reasonable to postulate that: among all possi
ble ways of distribution of sensors (in the considered finite spatial 
domain) the best will be such which provides maximum entropy H(£1 ,r 
••• 'EN ) of the field values at points £f , £ .. , ••• ,E" • Another possi
ble criterion is the minimum of mutual information I~(~) between the 
indications of i-th and j-th sensors (i,j = 1,2, ••• ,N). 
In the case of the displacement field u(~,t) of zero mean measured 

at N points £f ,E"" ••• ,£" the criterion of maximum entropy takes the 
form ..... 

H(u4/ur"""u,,,) = -f· ·Sf(uof, ... ,UN) lo,fru", ... ,UN)cJU., .•. Ju,,::: mo..x (4.7) 
-... _ tt""IIN . 

where f(u1,u~, ••• ,uH) is the joint probability density function of 
u1 = u(!'pt), u~= u(!'z.,t),oo., uN= u(!,,,,,t). 
If the field is Gaussian then the entropy is expressed in terms of the 
correlation function of the field. In general, 

(4.8) 

where IKI is the determinant of the matrix ~. In the case of two 
measurement points we have 

H (U4/ Ul.) = lo~ UTe (kf1~l, -k1~)f 
where 

k~' = < '" (tl,!;) U (!j,I:» I f;i = 1,.e. (4.10) 

It can be easily verified that in this case the criterion of minimum 
of mutual information is equivalent to the minimum of the correlation 
coefficient between u., and u~. 

~x~mE1~. A beam vibrating under stochastic (Gaussian white noise) 
excitation. 
governing equation 
and boundary conditions: 

Ao Utt +8.,u. ... ux+ CoU.UXJl t = r(t,t) 
U.(O,f):: 1l",/O,f)=Oj u(l,t}: UICIC (L,l1=O 

th d d 1 h U(It,i:) = i.. If,.(t) !f:(JI} I me 0: mo a approac : "&1'" "-

K,,(A.t,Jla.I~) = k.t 'If(l'.)~(Jla.)~'/c i 'Rjl:. =<~(+)~(t» 
Since the solution.u(x."xL,t) is a Gaussian process, expression (4.8) 
can be used and then maximized. In the case of two sensors, when two 
first vibration modes are accounted for we obtain the result saing 
that the sensors should be placed at x=~ and x= lor, by the symmetry 
at x= i and x=tl. More complex situations are recently under the 
author consideration. 
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In conventional optimal design of structural systems the weight or the initial cost of the structure is usually 
used as objective function. Further, the constraints require that the stresses and/or strains at some critical 
points have to be Jess than some given values. Finally, all variables and parameters are assumed to be de
terministic quantities. In this paper a probabilistic formulation is used. Some of the quantities specifying the 
load and the strength of the structure are modelled as random variables. and the constraints specify that the 
reliability of the structure has to exceed some given value. The reliability can be measured from an element 
and/or a systems point of view. A number of methods to solve reliability-based optimization problems has 
been suggested, see e.g. Frangopol [I), Murotsu et al. [2). Thoft-Christensen & S0rensen [3) and S0rensen [4). 

For structures where the reliability decreases with time it is often necessary to design an inspection and re
pair programme. For example the reliability of offshore steel structures decreases with time due to corrosion 
and development of fatigue cracks. Until now most inspection and repair strategies are based on experience 
rather than on rational investigations, see e.g. Jubb [5) and Dunn [6). As a result it can be expected that in
spection and repair of the structure on the above-mentioned bases are not only uneconomic, but perhaps also 
unsatisfactory from a safety point of view. 

In chapter 2 of this paper reliability-based optimal design is discussed. Next, an optimal inspection and repair 
strategy for existing structural systems is presented. An optimization problem is formulated, where the ob
jective is to minimize the expected total future cost of inspection and repair subject to the constraint that 
the reliability at any time is acceptable (see Thoft-Christensen & S0rensen [7)). The reliability is estimated 
using first-order reliability methods, Thoft-Christensen & Murotsu [8) and Madsen et al. [9). Finally, integra
tion of the optimal inspection/repair strategy and the reliability-based optimal design problem is considered. 
A practically usable procedure to solve the described integrated optimization problem is presented and de
monstrated on an offshore structure. 

2. OPTIMAL DESIGN 

From a classical, deterministic point of view optimal design of a structural system is usually formulated as 
an optimization problem where the structural weight is used an an objective function and where the con
straints ensure that stresses, displacements, etc. do not exceed given critical values. The optimization vari
ables are denoted Z = (zl ' z2' ... , zm) and in most cases they are geometrical quantities, such as cross-sec
tional areas. However, instead of using the structural weight as an objective function the total or the initial 
cost of the structure can be used. 

In reliability-based structural optimization some of the quantities describing the load and/or the strength of 
the system are modelled as random variables. The random variables are denoted X = (Xl' X2, ... , Xn ). A 
reliability model of the structural system is then formuIated. The elements in this model are failure elements 
modelling potential failure modes of the elements of the structural system, e.g. fatigue failure of a tubular 
joint. Each failure element is described by a failure function 
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g(x,z)=O (I) 

Realizations x of X resulting in g(x, z) ..; 0 correspond to failure states, while g(x, z) > 0 correspond to safe 
states. In first-order reliability methods (FORM) a transformation T of the generally correlated and non-nor
mally distrib-:!ed~a~ables X into standardized and normally distributed variables U = (U I , U2 , •.• , Un) is 
defined. Let X = T(U). In the u-space the reliability index {j is defined as 

{j = min (uT u) 1/1 (2) 
g(T (ii), z) = 0 

The solution point u· to the optimization problem in (2) is called the design point. If the safety margin M = 
g(T(U» is linearized in the design point we get 

(3) 

where 

ex = u~ = -=.L ~ 
i (j IV ugl aUi 

(4) 

"iJ ug is the gradient of g with respect to u in the design point u·. 
If the failure function is not severely non-linear then the probability of failure Pf can with good approximation 
be determined from 

(5) 

where «1>(.) is the standard normal distribution function. 

Let the structural system be modelled by s failure elements and let failure of the system be defined as failure 
of one of these elements. Then a generalized reliability index {js of this series system can be determined from 

(6) 

where Ii = WI ' (j2 ' ... ,(j.) are the reliability indices of the failure elements and p is a correlation coefficient 
matrix determined from the linearized safety margins. «1>,(.) is the s-dimensional standard normal distribu
tion function. More sophisticated models of systems failure are described by Thoft-Christensen & Murotsu 
[8]. 

Let the systems reliability index (js be used as a measure of the reliability. Then the reliability-based optimi
zation problem can be formulated as, see S0rensen & Thoft-Christensen [ 10] 

min C(Z) 
z 

(7) 

(8) 

(9) 

where C(Z) is the objective function (e.g. the initial cost of the structure), {jS'in is some target reliability in
dex and z~ and ZU are lower and upper bounds of the optimization variables. 

Alternatively, the reliability indices of the failure elements can be used as constraints. Then, instead of (8) 
the constraints are 

i = I, ... , s (10) 

{jiin is the lower bound of the acceptable reliability index of element i. 
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The reliability-based optimization problems are generally non-linear and non-convex. Most optimization al
gorithms require calculation of the gradients of the objective function and of the constraints. From (2) and 
(4) it is seen that 

af3j I agj(U* , z) 

aZj=llIugjl aZj (II) 

(II) implies that gradients of (10) can be estimated effectively. Approximate methods to estimate quasi-ana
lytical gradients of (8) are described in S0rensen [4). A procedure by which the systems reliability optimiza
tion problem (7) - (9) is solved by using a sequence of element reliability constraint problems is also described 
in [4). 

3. OPTIMAL INSPECTION AND REPAIR STRATEGIES 

The purpose of an optimal inspection and repair strategy is to minimize the cost of inspection and repair of 
a given structure so that the structure in its expected service life has an acceptable reliability. The strategy is 
illustrated in figure I, where T is the lifetime of the structure and f3 is the reliability index of the structure. 

The reliability index f3 is assumed to be a non-increasing function with time t if no inspection and no repair 
are performed. Ti' i = 1,2, ... , N are the inspection times and f3 mjn is the minimum acceptable reliability of 
the structure in its lifetime. The quality of inspection at the time Tj is measured by a variable qj' i = I, ... , N. 
Depending on the magnitudes of the inspection qualities the reliability index function will increase at the in
spection times. 

It is further assumed that the structure is modelled by s failure elements and that the damage of each failure 
element can be modelled by an increasing function of time aCt) which is a realization of a time-dependent 
stochastic variable A(t). Failure of the element occurs when 

where acr is a critical damage measure, e.g. a critical crack length. 

Repair at the time Tj is assumed to be performed if 

(12) 

(13) 

where am is the damage measured during the inspection and ajn is a critical damage measure. A repair is as
sumed to take place immediately and to be complete. 

/let) 

.......... \. 1\ 
----~~ 

o 
Figure I. Reliability index f3 with inspection at the times T 1 ' T 2' ... , TN" 
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The inspection uncertainty which is assumed to decrease with inspection quality q is divided into two groups: 
measurement uncertainty (e.g. measuring of crack length) and non-detection of critical damage (e.g. ignoring 
a critical crack). The measurement uncertainty is modelled as 

(14) 

where AJ is a random variable with parameters depending on q. Likewise, the non-detection of a critical da
mage is modelled by a random variable A2 with parameters depending on the inspection quality q. 

Generally, the cost of construction, inspection and repair has to be measured in real prices. The cost due to 
failure is neglected in this paper. 

The cost of inspection C1N is modelled as a function of the quality of inspections 

(15) 

The cost of a repair CR and of construction C1 are assumed only to be dependent on the design variables z 

CR = CR (z) 

C1 = C1CZ) 

(16) 

(17) 

If the number of inspections is N and the real rate of interest is constantly equal to r then the total real capi
talized cost C is 

N N 
C(q, t,"Z) = C1CZ) + EC1N }q)e-rTI + ECR,iCZ)E[Ri(q,t»)e-rTI (18) 

i= 1 i= 1 

where E[Rj(q, t») is the expected number of repairs at the ith inspection. 

The reliability of the failure elements or of the system has to fulfil the following inequalities 

0";;t";;T,i=I,2, ... ,s (19) 

(20) 

The minimum J3-values are assumed to be at least of the order 3 - 4 so that the events of failure can be con
sidered as rare events. 

With the above assumptions the optimal inspection strategy for a single element in a given structure can be 
determined from the following optimization problem where the design variables are q, t and N 

N N 
min C(q, t) = E C1N (q)e-rTI + E CR E[Rj(q, t»)e- rTI 

ql ... qN i= I j= 1 

11'" IN 
N = 1,2, ... 

s.t. J3(T);;' J3 min 

N 

o .;;;; T - E ti .;;;; tmax 
i=1 

i = 1,2, . .. , N, N+I 

i = 1,2, ... , N 

i = 1,2, ... , N 

(21) 

(22) 

(23) 

(24) 

(25) 

where tmin , t max ' qmin and qmax are minimum and maximum time intervals and inspection qualities. J3(Tj) is 
the reliability index just before inspection at the time Tj or at the time T if i = N + I. 
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branch 2N 
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Figure 2. Repair realizations for a single element. 

The total number of different repair courses (branches) is 2N , see figure 2, where 0 and I signify non-repair 
and repair, respectively. Let +Ri and -Ri signify repair and non-repair at the time Ti and let BJ signify the 
event that branch j occurs at the time Ti. Then 

r- 1 

E[R;) = L.: P(+Ri n BJ) (26) 
j= 1 

If repair events are rare then approximately 

(27) 

A simple upper bound of (26) is 

(28) 

(28) is expected to give reasonable estimates when the number of inspections is not too large and when the 
repair events cannot be considered as rare. 

The reliability index P(Ti) at the time Ti can be estimated using (6) 
21- 1 

P(Ti) = - <{>-1 [L.: P(F(Ti) n BJ») 
j= 1 

(29) 

where F(Ti) is the event that failure occurs at the time Ti. Corresponding to (27) and (28) an approximation 
and a simple lower bound can be estimated from 

(30) 

and 

(31 ) 

In order to solve the optimization problem (21) - (25) effectively it is very important that the estimates and 
the gradients of E[RI) and P(T;) are not too complicated to calculate numerically. But even if approximate 
estimates are used it can be expected that the result of the optimization problem gives a reasonable distribu
tion of inspection intervals and qualities. 

Let a given structure be modelled by s failure elements in a series system and let all failure elem!!nts be in
spected at the same times TI and with the same inspection qualities ql' Then an optimal inspection strategy 
can be determined from the following optimization problem 
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N • N s 

min C(q,t) = E ECIN,j(qj)e-rTi + E ECR,jE[Ri/q,t)]e-rTi 
q, ... qN i= 1 j= 1 i= 1 j= 1 
Ii'" IN 
N = 1,2, .. 

s. t fjs (T) ;;;. fjmin 

N 

o ,.;;; T - E ti ,.;;; tmax 
j= 1 

i = 1,2, ... , N, N+I 

i = 1,2, ... , N 

1 = 1,2, ... , N 

(32) 

(33) 

(34) 

(35) 

(36) 

C1 N ,j and CR ,j are the inspection and repair cost of element j. E[ Rjj 1 is the expected number of repairs at the 
time Ti in element j: 

2'(1-1) 

E[Rij ] = E • P(+Rij n B~) (37) 
k=1 

The systems reliability index fjs (Ti) is given by 
2'0-1). . 

fjs (T) = - <1>-1 [E P( U F/Tj) n B~)] (38) 
k=1 j=1 

F(Ti) is the event that element j fails at the time Ti. If repair events are rare then simple approximations to 
<37) and (38) which include the essential features are 

(39) 

fjS(Ti)~-<I>-l[P(U {Fj(Ti)n-Ri_Ij})] (40) 
j= 1 

The two optimization problems (21) - (25) and (32) - (36) are a mixture of integer, non-linear and non-con
vex optimization problems, which can be solved sequentially for a fixed number of inspections N. 

The probabilities in (26) - (40) can be estimated using first-order reliability methods, see example 2. 

4. INTEGRATION OF OPTIMAL DESIGN AND OPTIMAL INSPECfION/REPAIR STRATEGIES 

Let the design variables z and the inspection variables N, t and q be design variables in an integrated optimal 
design and optimal inspection strategy problem. Then the following optimization problem for a structural 
system modelled by s failure elements can be formulated 

N s N s 
min C(Z, (}, t) = C1(Z) + E E C1N}qi)e-rTi + E E CR,j(Z)E[Rij(Z, q, t)]e-rTi (41) 

zi",zm i=lj=1 i=lj=1 

qi'" qN 

Ii'" IN 

N = 1,2, ... 

s.t. fjs (T) ;;;. fjmin 

N 

o ,.;;; T - E ti ,.;;; tmax 
i= 1 

i = 1,2, ... , N, N+I (42) 

(43) 
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tmln < tl < tmax i = 1,2, ... , N (44) 

qmln < qi < qmax i = 1,2, ... ,N (45) 

z~ <zl <zi i= 1,2, ... , m (46) 

This second integer optimization problem is generally non-linear and non-convex. The optimization problem 
can alternatively be formulated as the problem to maximize the minimum systems reliability index during 
the lifetime of the structure with the constraints (43) - (46) and with the further constraint that the total 
cost of construction, inspection and repair must not exceed a maximum cost Cmax . Another alternative is to 
formulate a multi-objective optimization problem where the solution can be chosen from the Pareto opti
mum set. 

In this paper the formulation (41) - (46) is used. The optimization problem is solved sequentially for varying 
N using the NLPQL algorithm implemented by Schittkowski [II). The algorithm is based on the method by 
Han [12], Powell [13) and Wilson [14). Generally it is a very effective method where each iteration consists 
of two steps. The first step is determination of a search direction by solving a quadratic optimization prob
lem formed by a quadratic approximation of the Lagrangian function of the non-linear problem and a lineari
zation of the constraints at the current design point. The second step is a line search with an augmented La
grangian merit function. 

s. EXAMPLE 1. MODELUNG OF FATIGUE CRACK FAILURE ELEMENTS 

A simple fatigue crack failure element is considered in this example. In example 2 the same failure element 
is used to model the failure modes in a plane model of an offshore steel structure. Based on a linear elastic 
fracture mechanics approach, Paris' law and constant amplitude loading the following safety margin can be 
formulated corresponding to the failure event that the crack exceeds a critical crack length aer , see e.g. Mad
sen, Krenk & Lind [9). 

2-M 2-M 
M (t)=A-2-- a- 2- + 2-M yM (Bao)M 7fM/2vt 

F 0 or 2 K 
(47) 

where Ao is the initial crack length, Y the stress intensity factor, B a load model uncertainty parameter, M 
and K material parameters, II the stress cycle rate and t the time. ao is the standard deviation of stress vari
ations which is generally dependent on the design variables z. 
Following the assumptions stated above a safety margin corresponding to repair can be formulated as 

2-M 2-M 
MR(t)=Ao-2-_(~n)-2-+2"J..~M yM (B~O)M 7fM/2I1t (48) 

I 2 

where ain is the critical repair crack length and Al and A2 the stochastic variables modelling inspection un
certainty, see (13) - (14). In (47) and (48) Ao' y, B, M and K are modelled as random variables. 

From (48) it is seen that both Al and A2 can be considered as inspection model uncertainty variables of 
the multiplication type. Therefore, it seems reasonable to model Al and A2 as log-normally distributed 
variables. The following distribution parameters are used in this example 

AI: LN(O.I Q(q), 0.02 Q(q» 

A2: LN(Q(q), 0.2 Q(q» 

O<q<1 

O<q<1 

(49) 

(SO) 

where LN(p, 0) is a log-normal distribution with the expected value p and tfle standard deviation o. In this 
example Q(q) is 

I-q 
cx(q) = 0.14 7"1 ~(-;-I -"'-q";O)3 (5 I) 
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Figure 3. Example of model of inspection quality parameter a(q). 

In a practical situation the constants in (49) - (5 I) should clearly be calibrated carefully to experimental data. 
The proposed model assumes that the inspection quality q is in the open interval from 0 to I. The function 
a(q) in (5 I) is shown in figure 3. The ~lightly S-shaped form of a(q) implies that the probability of discovering 
a failure as a function of q will also be S-shaped. A consequence of this is that even a small inspection quality 
gives a relatively high probability of discovering a critical crack length. Contrary to this even a high inspection 
quality will not guarantee that a critical crack is discovered. 

The other stochastic variables are modelled as follows 

AO: LN(l.0.25) [mm) 

Y: LN(l.0.05) 

B: LN(l.0.25) 

M: N(3.8.0.095) 

K: LN(6400.1024) [106 N/m2 ) 

N(I'. 0) signifies that the variable is normally distributed with the expected value I' and the standard deviation 
o. M and £nK are assumed to be correlated with the correlation coefficient p = - 0.44 (see Karadeniz et al. 
(15». 

Following Wirshing (16) M and K are assumed to be independent. Further. the material variables Ao. M and 
K before and after a repair are assumed to be independent. 

Using the first-order reliability method for a single element model (27) can be approximated by 

(52) 
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where tlR (Tj) is the reliability index corresponding to the safety margin (48) and p is the correlation coeffi
cient between the safety margins at the time Tj and Tj_ l . Only the time parameter changes in the safety 
margin MR from the time T1_ 1 to Tj. Therefore, p can be expected to be close to -I so that 

N 
.EE[Rjl 5!! 4>(-tlR (TN» (53) 
j-I 

A good approximation of (30) is 

(54) 

wh~retlF(Tj) is the r~liability ind~x corresponding to the safety margin (47) and p is the correlation coeffi
cient between the linearized safety margins Mp (Tj) and MR (Tj_ I ). Again, due to no repair in the time in
terval between the two events, p can be expected to be close to -I. Therefore, 

(55) 

For a series system model the above assumptions imply that the correlations between repair safety margins 
of a given failure element between repair events can be considered to be high. Further, the correlations be
tween safety margins of different elements and between safety margins before and after repair can be con
sidered close to O. This implies that 

(56) 

and that tls (Ti) given by (40) can be approximated by . , 
tlS(Ti) 5!! - 4>-1 [PC U {Fj(T1) () -R1_ 1 j})l;> - 4>-1 [min {I , .EP(Fj(Tj) () - Rj_ 1 j)} 1 

j~l j-I 

• 
5!!-4>-I[min{l,.E(4)(tlR (T1_ 1 »-4>(tlp (Tim)) 

j= 1 J J 
(57) 

or if the correlations between the safety margins of different elements are taken into account 

- -
tls(T1) 5!! - 4>-1 [max{O, 4>, (tl R (Ti_ l ) ; PR (T1_ 1 » - 4>. (tll'(Tj) ; p.p(Tj»} 1 (58) 

where p.R and p.p are the correlation coefficient matrices for safety margins of different elements for repair 
and failure events, respectively. 

6. EXAMPLE 2. OPTIMAL INTEGRATED DESIGN OF A PLANE OFFSHORE STRUCTURE 

In this example integration of optimal design and optimal inspection strategy for a plane model of a steel 
jacket platform with fatigue crack failure elements is considered. The structure shown in figure 4 is con
sidered. The load modelling and the detailed geometrical description are described in Thoft-Christensen [171. 
Due to symmetry only the 8 failure elements indicated by x in figure 4 are considered in this example, i.e. 
s = 8. The structural design variables are the tubular thicknesses of the 6 groups of elements indicated by 
o in figure 4, i.e. m = 6. Further, the following values of the constants in (47) and (48) are used: II = 6.31 0 106 

cycles/year, time t measured in years, aer = 40 mm, ain = 10 mm. In this example aer is chosen to be constant. 
If the critical crack length is dependent on the tubular thickness then another possibility is to put aer equal 
to the design variable modelling the thickness of the actual structural element. 

The standard deviation of stress variations is modelled as 

Au = cu(SCFa, SCFb , influence coefficients, sectional area and modulus) (59) 
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31.65 m 

\==",=;::.r=-,.......,=SWL 

51.15 m 

" 
Figure 4. Offshore steel jacket structure. 

where a is the hot spot stress depending on the stress concentration factors for axial and bending load effects 
SCF a and SCFb (here the formulas by Kuang are used, see Almar-Na:s (18)), the influence coefficients for 
unit loads and the sectional area and modulus. All these quantities are dependent on the design variables z. 
c is a constant (in this paper c = 25'106 N/m 2 ). 

The cost functions in the objective function in (41) are modelled as 

CIO = 35,000 kr/tons (60) 

CINO = 200,000 kr. (61) 

(62) 

The values of the constants are chosen on the basis of information of actual cost prices in the Danish part of 
the North Sea. The upper and lower bounds in (42) - (46) are chosen as 

trnin = 0.25 year 

qrnin = 0.1 

z~ = 30 mm 

prnin = 3 

r = 0 

trnax = 2 years 

qmax = 0.95 

zr = 100 mm , i = I, 2, ... ,6 

T = 10 years 

As mentioned above the NLPQL algorithm [Ill is used to solve the optimization problem. The probability 
estimates are calculated using first-order reliability methods and derivatives are estimated using semi-analyti
cal derivatives based on (II). Derivatives with respect to the design variables z are calculated using pseudo- . 
load vectors formed by numerical differentiation of the stiffness matrix of the structural system with respect 
to the design variables z. 
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Figure 5. Systems reliability index f3s as a function of t for optimal values of design variables and inspection 
variables for N = 6. 

For the number of inspections N = 6 the optimal values of the optimization variables are shown in table I. 
The corresponding systems reliability index f3s as a function of t is shown in figure 5. In this example it is 
seen that the optimal time intervals between inspections decrease with time and that the inspection qualities 
increase with time so that at the end of the expected lifetime of the structure, when the reliability require
ments become critical, the inspections should be performed more often and be of higher quality. Note that 
the increase in reliability after an inspection is growing with the time t. 

In figure 6 the optimal value of the cost is shown for different values of the number of inspections N. It 
appears that the total cost has a minimum of about 6 - 7 inspections. 

x 106 kr. C(N) 

29.8 

~ 29.7 

29.6 

29.5 

29.4 

N 
2 4 6 8 10 12 14 16 

Figure 6. Optimal total cost as a function of the number of inspections. 
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In table I the optimization results for some simplified models of the general optimal strategy problem are 
also shown. In column 2 the results are shown if no inspection is performed. The increase in the total cost 
is about 9%. This indicates, at least in this example, that the total cost can be reduced considerably when 
inspection is included. In columns 3 and 4 the result of a sequential optimization is shown. First, optimiza
tion with respect to the design variables z with constant time intervals and inspection qualities is performed 
(column 3). Next, optimization with respect to T and q with z equal to the values from column 3 is performed. 
The optimal value of the cost by this sequential procedure is seen to be less than I % greater than the result 
from column I, although the optimal values of the variables differ somewhat. Use of the sequential procedure 
reduces the computer time by about 20% (full optimization on a VAX 8700 lasts about 1000 sec.). 

In order to investigate the effect of the value of repair cost the same optimization problems are solved when 
CRO is changed from 25-106 kr. to 2.5-106 kr. The results are shown in table 2. It is seen that the change 
of the repair cost has only small effect on the optimal values ofT, q, z and the total cost. The reason for this 
is that the probability that repair takes place is extremely small. 

2 3 4 

full optimization no inspection inspection at pre-de- structural dimensions 
termined times with taken frum 3 
given qualities 

tl [year) 2 1.43 2 

t2 [year) 2 1.43 2 

t3 [year) 2 1.43 2 

t4 [year] 1.19 1.43 1.33 

ts [year) 0.994 1.43 0.974 

t6 [year) 0.925 1.43 0.865 

ql 0.1 0.5 0.1 

q2 0.133 0.5 0.1 

q3 0.261 0.5 0.115 

q4 0.332 0.5 0.185 

qs 0.385 0.5 0.236 

q6 0.423 0.5 0.280 

zl [mm) 68.9 76.2 70.6 70.6 

z2 [mm) 62.7 70.4 64.7 64.7 

z3 [mm] 30.0 30.0 30.0 30.0 

z4 [mm) 30.0 30.0 30.0 30.0 

Zs [mm) 50.4 59.2 52.4 52.4 

z6 [mm] 32.0 37.5 33.3 33.3 

C [106 kr.J 29.7 32.3 32.1 29.9 

Table I. Optimal values oft, q and z for N = 6 and CRO = 25 -I 06 kr. 
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2 3 4 

full optimization no inspection inspection at pre-de- structural dimensions 
termined times with taken from 3 
given qualities 

tl [years) 2 1.43 2 

t2 [years) 2 1.43 2 

t3 [years) 2 1.43 2 

t4 [years) 1.18 1.43 1.33 

Is [years) 0.987 1.43 0.973 

t6 [years] 0.916 1.43 0.865 

ql 0.1 0.5 0.1 

q2 0.144 0.5 0.1 

q3 0.277 0.5 0.115 

q4 0.343 0.5 0.185 

qs 0.392 0.5 0.236 

q6 0.442 0.5 0.280 

zl [mm] 67.6 76.2 70.3 70.3 

z2 [mm] 62.6 70.4 64.7 64.7 

z) [mm] 30.0 30.0 30.0 30.0 

z4 [mm] 30.0 30.0 30.0 30.0 

Zs [mm) 50.2 59.2 52.3 52.3 

z6 [mm] 32.5 37.5 33.4 33.4 

C [106 kr.) 29.6 32.3 32.0 29.9 

Table 2. Optimal values oft, q and z for N = 6 and CRO = 2.5 0 106 kr. 

7. CONCLUSIONS 

A model by which the integrated optimal design and optimal inspection times and qualities can be determined 
has been formulated. The total cost of construction, inspection and repair in the expected lifetime of the struc
ture is minimized in such a way that the reliability at any time is acceptable. The design variables are the time 
intervals between inspections, the quality of the inspections and some structural design variables. The reliabili
ty measures are estimated using first-order reliability methods. 

A numerical example, where an offshore steel jacket structure modelled by fatigue crack failure elements is 
considered, indicates that the model works. The example shows that the total cost is reduced significantly by 
including inspection in the optimization. Further, the example indicates that the time intervals between in
spections should decrease with time and the inspection qualities should increase with time. 

In order to model the reliability of a more complex structure a system consisting of series and parallel sys
tems of failure elements has to be used, see Thoft-Christensen & Murotsu [8]. Using such models. the effects 
of redundancy can be more realistically modelled. 

As can be seen from the optimization problems and figure 2 the number of possible branches becomes very 
large when the number of inspections increases and/or when the number of failure elements increases. There
fore, it is very important to be able to identify the most significant branches. The possibility of using expert 
systems for this purpose should be investigated. 
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After an inspection where the actual damage (crack length) has been measured the reliability estimates can 
be updated. Using the updated reliability measures new optimal inspection time intervals and qualities can 
be determined by solving the optimization problems (updated maintenance strategy). 
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Several recent papers on structural reliability, mainly due to Da
nish, Japanese and German authors, have brought to evidence that any 
failure analysis of multicomponent systems (subjected to combined / 
multiple loads) should be grounded on a consistent set-theoretic re
presentation of system failure event in terms of component/ elementa
ry failures; see, e.g •• P.Thoft-Christensen [1 •••• ,4]. P.Bjerager & 
S.Gravesen [5]. M.Hohenbichler. R.Rackwitz et ale [6, •••• 10]. Y.Muro
tsu et ale [11, •••• 16J. The theory of graphs not merely offers more 
explicit and convenient ways to visualize the structure of system fai
lure events, but it is also involved as a rich source of concepts and 
efficient methods to be applied in the reliability analysis of struc
tural systems. 

A couple of attempts to reveal how sO,me concepts and techniques 
from the field of graph theory are or can be applied in the area of 
reliability analysis of structures are presented. Section 2 deals 
with the concept of 'fault-tree'. A formal definition of this notion 
is proposed. together with an algorithm for the automatic generation 
of system failure event starting from a given fault tree. The minimal 
cut set / tie set representations [9] of the system failure event are 
characterized in terms of some parameters involved in this definition. 
Section } takes into account a couple of techniques for the search of 
stochastically dominant failure modes due to Y.Murotsu et ale It is 
briefly discussed the possibility to represent such failure modes by 
means of directed graphs and directed (labeled) hypergraphs. The fi
nal section of our paper includes a proposal for a branch and bound 
technique as a basis for the reliability evaluation of a framed- or 
truss structure. conceived at the mechanism level. That is. the basic 
(elementary) failur~there implied are not the potential plastic hin
ges but the fundamental failure mechanisms earlier considered by P. 
Thoft-Christensen & J .D.SJSrensen in the framework of the 'P -unzip
ping method'. 
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2. ~ ~ ill !h!.!!: Representations 

As we have already mentioned in the Introduction, the failure pro
bability of a structural system can be evaluated only after the sys
tem failure event F has been represented in an appropriate way. It 
is well-known the set-theoretic representation 

F = Un Fij 
i j 

where Fij are elementary or basic failure events 
a.o. For example, Fij may represent the failure 
yield hinge j developed within the failure mode 

(2.1) 

[1J, [9J, [15J, 
of a potential 
i, in the case of 

a frame structure. If the system is a truss structure, Fij 
an element (member) j which is involved in the failure mode 

may be 
i . 

This general set-theoretic model is also appropriate to characterize 
the system failure event at the mechanism level [1J. [2J, [3J. In 
this case Fij will be the event that the fundamental mechanism j 

occurs in the combined mechanism i which is one of the combined me
chanisms that can lead to overall system failure. When dealing with 
larger structures, it is not a very simple task to find a set-theore
tic representation of F like (2.1). On another hand, it is possible 
that not all the terms in the intersection-union decomposition of F 
are stochastically relevant, in the sense that some of the cut terms 
(j)Fij may have relatively small probabilities to develop in the 
system. As outlined in [9J, one expects that only relatively few cuts 
will dominate the union, so that a large number of cuts can be sor
ted out without loosing much accuracy. Furthermore, the primary set
decomposition of the system failure event F could be more complex 
than the one in equation (2.1), which is a cut-set representation. It 
may be a more general combination of intersections and unions of fai
lure events. 

That is why an efficient reliability analysis of a structural sys
tem requires a preliminary reduction of the set-theoretic representa
tion of F. Such a reduction may be accomplished in two ways. First 
of them is to find a minimal cut-set / tie-set representation of F. 
The CUTALG program of [9J renders such a decomposition. The second 
one is to further reduce the cut-set representation sorting out the 
non-relevant terms, after probabilities have been associated with 
the elementary events Fij • 

Since we are mainly concerned with the graph-theoretiC aspects of 
the reliability analysis of structures, let us first remark that th~ 

set-theoretic structure of the system failure becomes more explicit 
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when a kind of logical diagram is employed. It looks like an arbores
cence rooted at a node that corresponds to the system failure event. 
This one and all the other branching nodes correspond to the so-cal
led gates. Any gate may be either an "OR"- gate. or an "AND"- gate. 
The hanging nodes (leaves) correspond to basic failure events. As an 
example. we are taking from [9] such a logical diagram. However. it 
is represented in Figure 1 in a simpler way. which is closer to our 
formal definition of a fault arborescence that follows. A box-node is 
a gate with gate number and gate type inside (+ for "OR". * for"AND" 
following the gate number). A circlet-node is a leaf with basic fai
lure event label inside. 

Figure 1 : 

\ I \ " 

GJ db"G) 
I 

I o 
\ I I \ 

0068 
To state the formal definition of the fault arborescence. let k 

denote the level number. where k. O. 1 ••••• K. The root is at the 
level k. o. The lowest level of gate .~ corresponds to k. K. 

Definition ~ A ~ arborescence is a 5-tuple 

NG 

T • (N. U,B. K, A) where : 

N is the set of nodes. N. NG '-J NL (NG c-1 NL • ~ ) 

NG is the set of gate nodes. NG • N~ '-J N~ 
(N~ c-1 N~ • ~) 

K + is the number of levels of gate nodes 

is level-partitioned by 

NG - 0 N~k) • 
k=o 

N~O) _ {g!}With t • +/* 

U is the set of arcs, U • Un U Ut (Un c-1 Ut - ~ ) 

(2.5) 

(2.6 ) 
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where K { 
U C LJ[ N(k-1) X N(k)] u = 

n k.1 G G' and 

is the set of nonterminal arcs, and 

(g1' g2)' u'= (g;, g~) 

u f. u' =9> g2 f. g; 
K [(k) ] {u .. (g1' 1 1 ), u' .. (g;. 1;) 

UtC L-J NG X NL ' , , 
k=o and u f. u -=9> 11 f. 11 

(2.8) 

is the set of terminal arcs. Note that a leaf may appear just under 

any of the levels of the arborescence. even under the root. 

B is a (finite) set of basic failure events, 

B = {f1' f 2' ••• , f m} (2.9 ) 

71.: NL ---. B is the labeling function. (2.10) 

Although.the definition is now complete, we have to define else a

nother function - the "successor function" s - as it will be needed 

in formulating the algorithm which follows. If u = (n 1 ,n2 ) E U is 

an arc of T. then n 2 E s(n 1 ). Thus, for any n eNG' s(n) is the 

set of successors (or "sons", as they are sometimes termed in graph 

t~eory), immediately below n. It follows that s is a function of 

the form 

(2.11) 

We have now the preliminaries necessary to state 

E£Qposition 2.1 Given a fault arborescence T (according to Defini

tion 2.1) associated with a system failure event F, F can be re

presented in terms of set-theoretic operations (union and intersec

tion) by means of the algorithm FSTR given below. 

Algorithm (Failure Set-Theoretic Representation) 

a K 

L - clustering 

N L ", ~ where (2.12) 

N1k ) .. {f E. NL : 3 g E N~k) such that f e s(g)} .. 

.. {s(g) n NL : g E N&k)} • 

Note that the +/* type of the gate is not specified in (2.13) since 

it is not essential at this step. 

Set p .. 0 (p is the cycle control variable). 

NL and N&k) are as in Definition 2.1 while s is defined by (2.11) 

with the foregoing specifications. 
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L-cluster Partitioning, Constructing Preterminal Events 

p+1 If p -S K GO TO ~ else GO TO Step 4 

{ { - (K+1-P )} 3 (K+1-p) = i E 1, .•• , card NG : gi E NG 

such that s(gi)( )NL " fJ} . 
For every i E Ip 

N 1l) .. s (g i) n 
Gel) For every i 

A (p) 
i 

,. 
{

( ') {f} if 
fENLi (p) 

l ) {f} if 
fEN (p) 

Li 

Constructing Compound Failure Events 

f· { (K+1-p) 3 = lLj E 1, ••• , card NG : 

such thats(go) n N(K-p+2) = 
J G not 

~ For every j E J p 

Aj(P) ,.{:eE'~ ::::~:: 
glEm j 

if 

CIJ) For every gate node g E N~K+1-P) 

Aind(g) i \ J 

(p) 
Aind(g)j if 

{ 

(p) r--.. 

(p) 
Aind(g) = A (p) U A (p) 

ind(g)i ind(g)j if 

such that 

g E N~ 

(2.14) 

(2.16) 

(2.19) 

the two terms of the intersection/union in the right hand side of 

the equation (2.19) have been constructed by ~ since the index of 

g, ind(g) = ind(g)i E I , and by~, respectively, since the 
not p 

index ind(g) .. ind(g)Jo E J • 
not P 

At this stage, all the compound events corresponding to the gate 

nodes at the (K+1_p)th level of the arborescence are constructed. 

GO TO Step 2 • 
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Terminating 

This step is reached iff p g K+1 (see~); the system fai

lure event has been constructed during the preceding cycle (when the 

value of p has been p-1. K) : 

F = Ao (P-1) - Ao(K) • (2.20) 

Ao (K) is either a union or an intersection of events of the form 

A (K-1), depending on whether go E N~ or go E N~, respectively. 

( STOP) 

We do not give a formal proof of Proposition 2.1. Instead, we li

mit ourselves to a couple of remarks and comments. 

1° At several substeps of the algorithm, the labeling function 

is involved but we have omitted it in order to avoid additional nota

tional complexity. Thus, in equation (2.13) f E A(NL), f E. :J\(s(g» 

and A should stand before the last set in this equation, since the 

set N~k) is essentially a set of basic failure events, hence a sub

set of B. Similarly, a A should precede the set in the right hand 

side of equation (2.15). 

2° The algorithm is convergent since the number K of the levels 

in arborescence T is finite and, for any k, card N~K+1-P)iS also 

finite. 

3 0 Step 1 of the algorithm could be omitted (except setting p = 0) 

as the sets N~k) are not involved at the subsequent steps. However, 

these subsets of "clusters" of leaves associated with each level of 

the abrorescence might be relevant, especially when the failure F 

of the system develops in time. In this case the control variable p 

becomes a discrete time parameter on the time axis directed from the 

bottom (t = 0) to the top (t. K) of the arborescence. 

4° The algorithm FSTR is formally similar to some "bottom - up" 

parsing algorithms used in programming language compiling or in the 

theory of formal languages. 

One more point we have to discuss would be its practical utility, 
the more so as the dimensions of the fault arborescence and the com

plexity of the set-theoretic representation of F (given by (2.20» 
are expected to grow rapidly with the size of the structural system 

and with the number of its members / elementary failure events. The 

minimal cut-set / tie-set representations of F ~s considered in [9J 
are obviously more economic and have to be preferred. However, there 

may be two situations when a general representation like (2.20) could 
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be necessary or at least useful. The first of them has already been 
mentioned under 3°: the case when the failure of the system develops 
step by step, that is, sequentially along the time axis. The fault ar
borescence T and the representation (2.20) given by the algorithm 
reveal this temporal structure of F, While a cut-set representation 
- for instance - would destroy it. The second situation would be the 
one when the basic failure events are neither member failures nor (po
tential) plastic hinges developed within a failure mode, but funda
mental failure mechanisms as considered by P.Thoft-Christensen in [1, • 
••• ,4J. In this case the compound failure events Ai(P) given by 
(2.16) and Aj(P) given by (2.18) correspond to combined failure me
chanisms and the dimension of the fault arborescence / the complexi
ty of a representation like (2.20), respectively, will be much lower. 

Coming back to the fault arborescences, it is clear that such an 
arborescence will look much simpler when the system failure event F 
is characterized by a minimal cut-set or by a minimal tie-set repre
sentation. To support this remark, we give in Figures 2 and 3 below 
the fault arborescences corresponding to the minimal cut-set represen
tation and to the minimal tie-set representation of the failure event 
illustrated in Figure 1. 

Figure 2 

I I \ / I " I \ I \ I \ 

d6Qd68000~cbG 
According to Definition 2.1, we find for this fault arborescence 

K .. 2, N~ .. NG(O) • {g~}, N~ .. NG(1) .. {g~, g;, g;, g:, g;} The 

minimal cut-set representation corresponding to this reduced arbores
cence (that we denote by Tmc> is 

F .. (f1 nf2nf4>U(f1 nf2nf3)U(f3nf5)U(f/Jf5>U 

U(f1{)f3 >· 
It can be found by the algorithm FSTR in a single application of 
Step 2 (with p = 1, 11 = {1, 2, 3, 4, 5}, J 1 .. ~> and a single ap
plication of Step 3 (with p .. 2, Ii" ~ and J 2 = {O}). 
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Figure 3 

, \ , \ , \ 
, I 

88 
II' /1' 11\ 1 1 \ 
II' /1' 1'\ II, 
I' \ II \ II \ II \ 

dC±>~ d6 b ct)(b 0c;)08 
For this fault arborescence we have K '" 2, N~ '" N~O) '" {g~} , 
+ (1) {+ + + + +} i 1 NG '" NG "', g1' g2' g3' g4' g5 . The corresponding m nima tie-set 

representation of F is obvious. Let us denote the fault arborescen

ce generating such a tie-set decomposition by Tmt • 

It can be readily verified that these two types of minimal fault 

arborescences are characterized by 

Proposition 2.2 The fault arborescence Tmc generating the minimal 

cut-set representation satisfies the conditions : 

UtCNa1)XNL· 
(2.21) 

The fault arborescence Tmt generating the minimal tie-set represen

tation of F satisfies the conditions : 

K - 2, N* N ( 0 ) {g*} N+ N ( 1) - G= G .. 0' G- G' 

(2.22) 

3. Searching Stochastically Dominant Failure Modes in ~ of 

Directed Grap~ ~ gyp~graphs 

In a series of recent papers, Y.Murotsu et al. have developed a 

family of efficient techniques for the selection of stochastically 

dominant failure modes and for the evaluation of structural reliabi

lity. They can be applied to (redundant) frame and truss structures 

under combined load effects and make use of stiffness matrices, of 

advanced methods for failure probability evaluation by use of lower 

and upper bounds on partial failure probabilities a.o. The kernel of 

the proposed methods for the automatic generation of failure modes 
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is a branch and bound algorithm which selects the stochastically do
minant failure paths over the set of potential yield hinges [11 •••. 
•••• 16J. We shall take into account this technique, in more detail, 
in the next section. Here we are primarily interested in the graph
theoretic nature of these failure paths. 

Plastic hinges are assumed to develop one by one up to some speci
fic number Pk until a collapse mechanism is formed [13]. The se
quence of those plastic hinges to form a collapse mechanism is sym
bolically denoted as 

h1 -. h2 -. ••• -. h -. ••• --+ h 
P Pk 

and it is referred to as a complete failure path. The partial sequen
ce up to hp' that is, h1 --+ h2 --. ••• ---+ hp is said to be a 
partial failure path. The probability associated with a partial fai
lure path is defined by 

(p) 
P fp(q) = p[~ F(1) ] 

i=1 hi (q) 

(i) 
where Fhi(q) is the failure event that plastic hinge hi develops 

at the i-th order of sequence. Superscript p denotes the length of 
the failure path and q is used to denote a particular failure path. 
The combinatorial properties of identifying dominant failure paths 
are extensively investigated in [13J. The more difficult problem of 
evaluating the system failure probability on the basis of probabili
ties as those appearing in (3.2) is considered in all of the papers 
[11 ••••• 16J, and various solutions are proposed, depending upon the 
type of the structure. the loading conditions and other assumptions. 

From the graph-theoretic point of view, a failure path of the form 
(3.1) is effectively a path in a directed graph 

G = (H, U) or G .. (H, s) 

where the finite set H of vertices (or nodes) corresponds. in this 
case, to the set of potential yield (plastic) hinges; cardH = n is 
the order of G. U is the set of arcs. Alternatively, G can be de
fined by specifying the set H and the successor function s which 
has also been considered in the preceding section (see eq. (2.11» • 
For a general graph G = (H, s). the function s is defined on H 
and, for any h e H. s(h) is in 2H (the set of subsets of H). A 
practical difficulty arises here in what concerns the possibility of 
actually constructing the failure graph G. Theoretically. the set 
U of the arcs is the set of all pairs (h.h ) such that there 

p p+1 
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exists a failure path of the form (3.1) including hp ---. hp+1' But 
this cannot be accepted as a formal definition of U as it would be 
grounded on a rather heuristic basis. On the other hand, some res
trictions should be imposed on actual failure paths in the failure 
graph G. Firstly, no failure path may be a circuit. Secondly, a node 
occurring in a particular failure path may not occur once again in 
the same path; in other words, every failure path should be elemen
tary. 

The use of the successor function s in constructing a failure 
graph G = (H, s) could appear as more promising. Indeed, the failu
re path is constructed step ~ ~p. Once reached the node hi in a 
partial failure path, the choice for the next node .hi+1 to be selec
ted is not free. It could be limited by imposing certain constraints 
on the succ~ssor function s. ThUS~ if ~~p) is a (partial) failure 
path and if we denote by supp )t(p the set of distinct nodes occur-q 
ring along this.path of length p, then 

hi € sUPP .J"-~p) 0=:0£> hi+1 E S(hi )" supp J'l~i) • (}.4) 

But a constraint like (}.4) would in fact turn the successor function 
s into a path-dependent function : it is possible that a certainnode 
h may not succeed hi on the path ~(p), but it may succeed hi 
on another path ...r--~r) with q ~ ~" 

Furthermore, the same nodes (plastic hinges) may occur on diffe
rent failure paths, in different orders, of course. Theoretically, 
there may exist pi distinct failure paths over the same subset of 
p nodes. Even when the selection of the relevant failure paths is 
limited by means of probabilistic criteria (based on the use of pro
babilities of the form (3.2», the number of possibilities can remain 
prohibitive. 

Y.Murotsu et al. consider in [25J (Fig.5, page 87) a "search tree 
for evaluating upper and lower bounds of structural failure probabi
lity", involved in the reliability analysis of redundant truss struc
tures. It looks like a forest of arborescences, and a probability is 
associated with every complete failure path in any of the arborescen
ces. A partial failu·re graph could be constructed starting from a 
search tree of this kind, but it would be no more useful for distin
guishing between diffsrent failure paths. Arguments of this nature as 
well as the difficulties outlined in the above discussion have led us 

to the idea that a formal model as a background for the reliability 
analysis of structural systems could be hardly based on the use of 
directed graphs. 
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Instead. we are going to propose another mathematical structure as 
a more suitable concept to be used for modelling the (dominant)failu
re modes of structural systems. It comes to directed (labeled) hyper
graphs. Since this is a less usual mathematical structure. we recall 
its definition according to [24]. 

A directed hypergraph is a pair DH = (N. A) in which N is a 
set (of nodes). and A is a set (of hyperarcs) defined by 

A ~fam TS(N) where fam M is the set of families over 
the set M 

a family over M is a function F: M ---. m 
TS(N) is the set of tuples over N. hence t E TS(N) if t a (n 1 • 

n 2 ••••• nm) for some m ~ 1. A family can also be represented as a 
tuple. but ,for F(t) = k. F will include k successive occurren
ces of t. For our modelling purposes. it will suffice to restrict 
the range of families to the set {Of 1} because we shall not accept 
repeated tuples in a hyperarc. Thus. a hyperarc will consist in a 
single tuple (ordered subset) of length It I E {2 ....• n} where n = 

• card N (finite). Thus. the loops will be excluded. If F(t). 0, 

then the tuple t won't be a hyperarc of DH. 

A directed labeled hypergraph is a triple DLH = (N, L, A) where 
N is also a set of nodes, L is a set of labels, and A is defined 
by 

A £ fam (TS(N) X L) • 

Here again we shall observe the above mentioned restrictions on the 
families. Therefore, a labeled (directed) hyperarc of DLH will be 
of the form 

( t. t) - ( (n l' n 2' ... , nk),..e) with n i EN, .e E L. <:~ .7 ) 

An arc of the form (}.7) can be graphically represented as follows: 

Figure 4 

88 
There exist equivalent 
pergraphs, namely CBT 
set) representations ; 

©G 
representations for the 

(class-bag-tuple) and 
see [24] for details. 

directed labeled hy
RLS (relation list 

Let us now consider a structural system S with the (finite) set 

B of "basic" (elementary/ fundamental) potential failure events. If 
any possible failure mode (mechanism) develops sequentially over B. 
then the system failure event F can be modeled in terms of the di-
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rected hypergraphs as follows. 

The system failure event F can be represented by a directed hy
pergraph DHF = (B, A) in which B is the set of basic events and 
A is a set of directed hyperarcs, each a E A be·ing a tuple whose 
length ranges between 2 and m. card B. 

If probabilities can be associated with every basic failure event 
f and if there exists a procedure !P to assign a probability Pea) 
with every hyperarc a E A, then the failure event F will be re
presented by a labeled directed hypergraph 

DLHp '" (B , P ( A), A) 

where B and A are defined as above, while peA) 
labels. Th~refore every hyperarc a (corresponding 

(} .8) 

is the set of 
to a sequentially 

compound failure event) will be "labeled" or - J,n a more suitable lan
guage - weighted with its probability pea). 

Finally, if another procedure ~* exists to select the stochas
tically dominant (or significant) failure modes among all the possible 
modes, then the set of selected failure modes will be modeled by a 
partial directed labeled / weighted graph of DLHF , namely 

DLH; '" (B , P(A*), A*) with A*C: A • 

Then, the set P(A*) could be employed to evaluate the system fai
lure probability Pf - P(F) by means of appropriate techniques. 

We suppose this model is general enough to encompass a wide range 
of methods for searching stochastically dominant failure modes and 
for evaluating the system failure probability. 

4. ! Branch and Bound Techni~ for Estimating 2ystem Reliability 
at the Mechanism Level 

In a series of reports including [1, ••• , 4J, it is introduced the 
, ~ - unzipping method' as an efficient and simple procedure to es
timate the reliability of structural systems under specific assump
tions. It can be applied either at the level of (single, pairs,trip
les, ••• of) failure elements, or at the mechanism level. The latter 
approach proved to be computationally more efficient. 

On another hand, Y.Murotsu et al. have elaborated another method 
for evaluating the reliability of structural systems, based upon 
the automatic generation of stochastically dominant failure modes 
via a B II: B technique [11, ••• , 16J, [25J. 

Both the procedures share a more or less common mechanical and 
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probabilistic background. Differences emerge in what concerns the way 
to select stochastically dominant / significant failure modes. In 
this section we present an attempt to work out a B & B technique,si
milar to the one proposed by Y.Murotsu. with the difference that the 
failure modes are defined. like in [1 •••• , 4], as combined failure 
mechanisms over the set of fundamental failure mechanisms. 

Let us consider a structural system, e.g. a framed one. with n 
potential failure elements. Let H be the set of these elements (for 
instance, potential yield hinges). Let F denote the set of funda
mental failure mechanisms with card F = m. It is well known from the 
theory of plasticity that m = n - r. where r is the degree of re
dundancy. Let 

Denote by L = {P1• P2 ••••• Pt} the set of external applied loads. 
Then each fundamental mechanism fi is assigned a linear safety mar-

gin [3J n 

Mi .. Llaijl Rj 
j=1 

where a ij and bik are the influence coefficients. Rj is 
yield strength of failure element j and Pk is load number 
combined mechanism fi ~ fj is the one with the safety margin 

n 

.. Llair ! a jr IRr - L(bik ! bjk)Pk 
r-1 k=1 

the 
k. The 

Equation (4.3) is recursively 
ready combined mechanism and a 
mechanism. More precisely. let 
chanism. that is. 

extended to combinations between an al
(not therein involved) new fundamental 
m(P-1) denote a combined failure me-

m(p-1) .. f :!: 
i1 

fi ± ••• ! fi • 
2 p-1 

Then. starting from 
mechanisms. consisting 
from m(p-1) : 

m(p) m(p-1) + f 
q" - i 

m(P-1). a number of m - (p-1) of new combined 
of p fundamental mechanisms. can be obtained 

P 
f + f + + t = i - i - ... - i 

1 2 p-1 

where ip E {1. 2 ••••• m},,{i 1• i 2 , •••• i p_1} and q E. {1 •••• , Qp} 

with Qp = m - p + 1. If M(p-1) denotes the safety margin of the 

combined mechanism m(P-1) in (4.4) with the influence coefficients 

ar and bk , then the safety margin associated with the mechanism 
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of equation 

,. f)ir 
r-1 

subscript q 
ip ; that is, 

(4.5) will be 
J. 
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:!: a i rl Rr - I)bk ± b i k)Pk • 
P k .. 1 P 

in equations (4.5) and (4.6) corresponds, 

ip E {1, 2, •••• m}'-{i 1 , i 2 ,· .. , i p_1} 

{1 , ... , Qp}' The reliability index function 

(l. : U U {m(p)}---+ m r p q q 

in fact, 

can be calculated for every combined mechanism as in [3J. 
For increasing p, the set of possible combined failure mecha

nisms grows rapidly, even if p is bounded by m (p ~ m). Just 
this is the' reason for applying the f3 - unzipping method in [1 •... 
... , 4J in order to select only the stochastically significant fai
lure mechanisms. 

As a preliminary to our proposal of a B & B technique at the me
chanism level, let us first remark that the probabilities associated 
with the failure mechanisms could be employed instead of the in
dices. A way to estimate these probabilities can be the one proposed 
in [8J by M.Hohenbichler. Another one could be based on the "exact" 
equation 

P (p) 
fm(q) 

p 

= p[ l")(Mi -::; O)J 
def j=1 j-

(4.8) 

To formulate a B & B algorithm to select stochastically dominant 

failure mechanisms as a basis for estimating the system failure pro
bability, a couple of preliminary notations are necessary 

the set of (combined) failure mechanisms to be selected for 
branching at the p-th stage / cycle of the algorithm 

~ ,. F = the set of fundamental failure mechanisms (see (4.1»; 

Dp the set of discarded failure mechanisms at stage p 

)1; the set of selected failure mechanisms at stage p 

supp m(p) = {fi , fi ••••• ii} for m(p) as in equation (4.5). 
q 1 2 P q 

PfmM - the current value of the maximum probability of system fai
lure by combined mechanisms 

p the stage (cycle) control variable. equal to the number of 
fundamental failure mechanisms involved in the combined me
chanisms of J1p ' 
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A Branch ~ Bound Algorithm !! the Mechanism Level 

~ Initializing 

J1..o = '/J, Jt~ = '/J, ~o" '/J, P fmM .. 0, p .. 0 • 

Partitioning 

p + 1 If p.. 1 set ~ = F 
GO TO ([]) 

and GO TO~; else 

If p < m set Jltp " {m ~P-1) ! f i : 
else GO TO ([JD P 

fi E F" supp m~P-1 )}, 
p 

For every m(p) E AA evaluate 
q u'''p' 

p(m(p» .. p[ M (p) < 0] 
q q = 

using equations (4.6) and (4.8). 

~ Branching 

CIJ) Select 

m(p) 
qo 

denote 

Denote 

Pfm{qo) (p). max {Pfm(q) (p): mq E cJ'Itp} 

m(p) = m(p) 
* qo 

P (p) - P (p) and GO TO Step 4. 
fmM fm(qo} 

I Step '41 Bounding 

(4.10) 

~ Update the maximum PfmM of the probabilities of combined fai
lure mechanisms as follows : 

If PfmM(P) > PfmM then PfmM - PfmM(P) and GO TO ~; 
else PfmM remains unchanged and GO TO ~ • 

J1 * .. .)1,* U {m{p}} 
p p-1 * 

~ P .. f)P_1 U { m~p)e Jtp 

where "(' is a bounding constant. 

<!=3) cXp " cMp ,,(J't; U 1)p) GO TO Step 5. 

~ Terminating criterion 

If ~p. '/J the search is completed ;C 
If cXp ~ '/J GO TO CIJ) . 

STOP )11' p .. m ,else 
GO TO ~ 
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Once the algorithm is terminating, it renders the set ~: as the 
set of stochastically dominant (most probable) combined failure me
chanisms. On this basis, the system failure probability Pf could 
be estimated by using procedures similar to those of [11, ••• , 16J • 

The algorithm is obviously more or less similar to the ones elabo
rated by Y.Murotsu et ale However, significant differences appear in 
what concerns, for instance, Step 3 (Branching) : when the failure 
events are already mechanisms, we have no more to check whether a col
lapse mechanism has been formed (Step 3.3 in [16J). Then, condition 
p = m in our Terminating criterion must be imposed, while a similar 
condition is not explicitly stated in the above mentioned references. 
If p< m, the algorithm should go on with searching stochastically 
dominant failure mechanisms, even when ~p =~. However, it is ex
pected that'the probabilities PfmM(P) will decrease with increasing 
p, and therefore the size of the sets ~p will increase. 

Although we have not yet compared our algorithm with the ones due 
to Y.Murotsu from the point of view of computational efficiency,it is 
likely to be less time-consuming since the number of possible combi
nations of fundamental mechanisms is limited. 

5. Final Remarks 

The extensive research work in the area of structural reliability 
analy~is during the last decade has included a series of methods and 
models which involve graph-theoretic concepts or graph-based techni
ques, even though the mechanical and probabilistic backgrounds have 
naturally been dominating. 

Our tentative consists in investigating some more ways to make use 
of graph-theoretic concepts and techniques in this field. Thus,a fault 
arborescence was defined in Section 2, and an algorithm was formulated 
to represent the system failure event in terms of basic failure events 
by set-theoretic operations. A general model for systems failing se
quentially was proposed in Section 3, employing the concept of direc
ted (labeled) hypergraph. A branch & bound technique for searching 
stochastically dominant failure mechanisms as combinations of funda
mental failure mechanisms was constructed in Section 3 ; in a certain 
sense, it brings together elements from the models due to P.Thoft -
Christensen and to Y.Murotsu. 

The possible utility and specific adequacy of the models we propo
sed have also been discussed. Thus, the model of Section 3 would be· 
applicable to time-dependent failing. 
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Recent deyelopments in system reliability analysis of structures based on ideal plastic 
analysis methods are presented. The lower-bound (static) theorem of ideal plasticity theory is 
applied in a probabilistiC setting and . upper and lower bounds on the system reliability are esta
blished. A comparisOn with the reliability for first member yielding provides a quantitative 
measurement of the system redundancy. The analysis is performed for static overloading with a 
probabilistic load model. Two example olfshore jacket structures are used to demonstrate the 
analysis procedure. 

1. INTRODUCfION 

Present design practice focuses attention on assuring sufficient reliability of the structural 
elements individually rather than of the structural system as a whole. System elfects due to 
redundancy and many failure modes can, however, be significant and should preferably be taken 
into account in a rational design procedure. This requires the availability of operational methods 
for assessing the reliability of a structural system. 

Dilferent approaches can be followed for reliability analysis of structural systems with sys
tem failure involving Simultaneous failure of several elements. One approach is to formulate an 
Ideal plastic model of the structure and define failure as plastic collapse (formation of a mecha
nism). Another possibility is to adopt a model in which the structural elements exhibit some 
deformation-load elfect behavior and define failure of the structure as the event of a singular 
stllfness matrix or excessive deformations. A review of reliability models for structural systems 
Is given in [1,2]. 

The ideal plastic model approach has been used in numerous works, see e.g. [3-8]. This is 
mainly because such systems are conveniently analyzed with respect to plastic collapse applying 
the lower and upper bound theorems of plasticity theory. In most reported work the analyses 
have been based on the upper bound theorem according to which an upper bound on the reliability 
can be evaluated on basis of a set of plastic mechanisms. If the set of mechanisms is complete, the 
upper bound coincides with the exact reliability with respect to plastic collapse. Typically, how
ever, it Is not practicable to take into account the complete set of mechanisms. In fact, even for 
simple structures the number of mechanisms can be infinite and the evaluation of the reliability is 
non-trivial. Methods for identifying a set of significant (most likely) mechanisms can be used for 
some types of structures. Based on these mechanisms a close upper bound on the reliability may 
be obtained. The formulation of the equation of virtual work for'a given plastic mechanism can 
be rather involved, notably in the case of yield surfaces of random shape and when the geometry 
of the structure is random. 
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Recent developments for evaluating the reliablllty with respect to plastic collapse on basis of 
the lower bound theorem are presented. Both a lower and an upper bound on the reliability are 
obtained. The reliability model is formulated for a spatial truss structure. but the generalization 
to a spatial frame structure taking into account load-elfect interaction in potential points of yield
ing is straight-forward. [9.10]. The analysis procedure is demonstrated on two example struc
tures. Other example structures of up to 270 members have also been successfully analyzed. 

2. STRUCTURAL MODEL 

An n times redundant (statically indeterminate). plane or spatial truss structure of m bars 
is considered. The external loading is given in terms of a finite set of nodal forces 
Q = (Q1' Q2 ••..• ~) and the normal forces in the bars are denoted by N = (N I' N 2' ••• • N m ). 

The bars are assumed to be of ideal plastic behavior. The yield load in tension is Nt + and the yield 
load in compression N I -. i = 1.2 ..... m. The considered limit state of the structure is plastic col
lapse. i.e. formation of a mechanism. 

3. LOWER BOUND THEOREM FORMULATION OF THE RELIABILITY 

The lower bound theorem of limit analysis is valid for ideal plastic structures. i.e. the yield 
surface does not change during deformation. and the yield surface is convex and the plastic strain 
rates are derivable from the yield function through the flow rule (normality condition) under the 
assumption that changes in geometry of the structure at plastic collapse are insignificant. The 
lower bound theorem states that the structure is able to carry the external load if and only if 
there exists a statically admissible set of internal forces such that these nowhere violate the yield 
condition. see e.g. [11]. 

Focusing on equilibrium states of the structure it is convenient to apply a force method for
mulation. The complete set of statical conditions are expressed in terms of the normal forces N 
and the external nodal forces Q as 

AN=Q (1) 

A is the equilibrium matrix given In terms of the geometry of the structure. By Gauss-Jordan 
elimination or an equivalent procedure within the force method. [12.13]. the solutions to (1) can 
be expressed as 

(2) 

where z = (z I' Z 2' ••• • Zn) Is called the vector of redundants. If the elimination procedure Is 
carried out such that each Z -component corresponds to a normal force in a bar of the truss struc
ture. (2) expresses a choice of a statically determinate primary system. 

The state of the i th bar Is described by two functions 

gil_I(NI-.NI ) = N I- + NI 
(3) 

corresponding to yielding of the bar in compression and tension respectively. If both functions are 
positive the i th bar behaves elastically. The behavior of the truss structure is thus described by 
2m functions. 

The physical basic variables In the formulation of the reliability comprise the nodal forces Q. 
the yield forces (N-. N+) and a number of geometrical variables. However. throughout this paper 
the geometry of the structure is assumed deterministic. If this is not the case. the equilibrium 
matrix In (1) is random and the analysis becomes significantly more complicated. The variables 
Q.N-.N+ are assumed to be random with continuous joint distribution. A transformation T exists 
such that 



www.manaraa.com

419 

(4) 

is a normalized Gaussian vector with independent components, see [14]. Let the dimension of this 
vector be q. The behavior of the truss structure is now described by 2m functions gl in the q

dimensional u -space defined such that 

2m { > 0 elastic behavior 
T2r [gl (u;z)] ~ 0 yielding in some point (s ) 

The reliability I - PI with respect to plastic collapse can be expressed as 

I - PI = PIg (U) > O} 

where 
2m 

g (u) = max [min [gl (u;z)]] 
zER" 1=1 

(5) 

(6) 

(7) 

The max-operation expresses that an admissible equilibrium distribution of internal forces is 
sought for each set of values of the basic variables. The system representation by (7) may be 
referred to as a parallel system with an infinity of series subsystems. 

For some of the considerations in the following it is necessary to recast the expression for the 
reliability. Noting that U can be expressed as U = R A (R ~O) where R2 is a chi-square distri
buted random variable with q degrees of freedom and A is a q -dimensional vector uniformly dis
tributed on the unit sphere ng , the reliability can be given in the form 

I-PI = [P{g(RA»O I A=a}1 A(a)da (8) , 
= [p{g(Ra» O}I A(a)da , 

where I A(a) = constant is the probability density on the unit sphere. If the safe set in u -space is 
star-shaped (e.g. convex) with respect to the origin, P {g (R a) > O} is given in terms of the chi
square distribution function xi as 

p {g (R a) > O} = x;(r (a)2) (9) 

where r (a) is the distance from the origin in u -space to the limit state surface in the direction 
defined by a. For fixed a, r = r (a) is part of the solution to the optimization problem: 

2m 
Determine r ~ 0 and zER n such that r is maximized subject to min [gl (r a;z)] > O. 

1=1 

If the transformation T is linear (normally distributed physical basic variables), the optimization 
problem reduces to a linear programming problem. 

The formulation in this section is easily extended to cover load effect interaction in the yield 
function. Eq.(3) is then a function (linear or non-linear) of load effects and (7) still holds. If the 
yield function is piecewise linear and the transformation T is linear, the optimization problem 
remains a linear programming problem. 

4. EVALUATION OF THE RELIABILITY 

The evaluation of the reliability given by (6) or (8) is non-trivial for problems of high 
dimensionality. The following outlines how lower and upper bounds on the reliability can be cal
culated under certain assumptions. First and second order reliability methods FORM/SORM as 
well as Monte Carlo simulation methods are applied in the calculation. Besides the reliability 
measures, a FORM/SORM analysis directly provides parametric sensitivity measures for the relia
bility with respect to deterministic and distributional parameters, see [14]. These measures can be 
used in a search for an optimal design. 
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4.1 Lower Bound on the Reliability 

If the considered equiUbrium distributions of internal forces is restricted by substituting z in 
(7) by a finite number of vectors Z1.Zl' •••• z, the right side of (6) provides a lower bound on the 
reliability. The simplest case is to consider only one z -vector. Zo. The corresponding lower bound 
can be optimized by solving the non-linear optimization problem: 

2m 
Determine ZoER" such that the probability P {min[gl (U:zo)] > a} is maximized. 

1=1 

The amount of calculation can be reduced If the lower bound is sought maximized by solving the 
sub-optimiZation problem: 

2m 
Determine ZoER" such that min[P {gl (U:zo > a)] is maximized. 

1=1 

If the transformation T Is linear. this problem is a linear programming problem and a solution can 
be found efficiently. However. the lower bound on the reliability obtained in this way generally 
turns out to be considerably smaller than the exact reliability. Moreover. the result depends on 
the choice of theredundants. i.e. on the statically determinate primary system (BQ and Bz in (2)). 

In [15.16] methods for Improving the lower bound by considering more than one set of values 
for the redundant forces or by considering more than one choice of the statically determinate pri
mary system.are given. The improvements of the lower bound obtained by these approaches can 
be significant. However. no general and efficient procedure to assure this has been reported. 

Here. improvements of the lower bound on the reliability by taking the set of redundants z 
as a random vector Z are considered. For any outcome u of U a value of z can be determined as 
the solution to the right hand side of (7). Let this solUtion be denoted by Z=h(u). The reliability 
can thus be written as the reliability of a series system: 

2m 
1-PI = P{mln[gl (U;Z)] > a} 

1=1 
(10) 

where 

(11) 

Unfortunately. the function h is not known. However. the right hand side of CIO) provides a 
lower bound on the reliability for any choice of the function h. Two choices are applied here. 

First. Z is chosen as a linear function of the external loads Q. i.e. 

Z=xQ+Zo (12) 

and the lower bound based on this random z -vector is maximized by solving the optimization 
problem: 

2m 
Determinex.zo such that min[P{gl (U;Z) > a}] Is maximized. 

1=1 

This non-linear optimization problem is solved by sequential linear programming. The solution 
has the advantage of being independent of the chosen redundants (see (2)). 

Secondly. Z is chosen as a linear function of the external loads Q as well as the yield forces 
of the bars (N-.N+). 

Z = xQ+y [~: I +Zo (13) 

2m 
and the optimization problem maximizing min [p {gl (U;Z) > a}] is solved by sequential linear pro-

1=1 
gramming. This case includes the optimization problem formulation with deterministic safety 
margins in [7.17]. For the chOice of Z in (13) also the following optimization problem is con
sidered: 
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2m 
Determine x,Y,Zo such that P{min[gl (U,Z)] > OJ is minimized. 

1=1 
The problem is solved by a steepest ascent method. To improve the calculation efficiency the par
tial derivatives of the reliability with respect to the parameters x,y,Zo are approximated by the 
asymptotic results for parametric sensitivity measures known from first and second order relia
bility methods, see [14]. 

The procedures are valid for yield functions with load effect interaction and for any joint 
distribution type of the physical basic variables. Some simplifications are achieved when the dis
tributions are normal (linear transformation T). It turns out that the optimal z-solutlon deter
mined for this situation Is near optimal for a general distribution type situation. 

The lower bound reliabillties from the Ideal plastic analysis may be compared with a lower 
bound obtained by assuming a linear elastic distribution of Internal forces in the structure. A 
measure of redundancy or reserve strength can thereby be defined. 

4.2 Upper Boun~ on the Reliability 

Two methods of plastic upper bound reliability analysis are considered, namely the direc
tional search method [9,101. and the linear combination method [7,17]. An approximate evaluation 
of the reliability in (6) can be carried out by a first or second order reliability method provided 
the most likely failure points have been Identified. Restricting the considerations to the cases 
where the transformation T is linear, the safe set in u -space Is a polyhedral convex set. A close 
upper bound On the reliability corresponding to this set can be obtained by applying only the 
hyperplanes defining the faces of this polyhedral set with smallest distance to the origin of u
space. From experience it Is known that within plastic system reliability analysis It is often neces
sary to apply several hyperplanes in order to get a close upper bound: Each hyperplane can be 
Interpreted as representing a failure mode (plastic mechanism) of the structure. 

The crucial point In calculating a close upper bound on the reliability Is thus to Identify the 
significant hyperplanes. One poSSibility is to apply the directional search method [9], describing 
the limit state surface in u -space by r = r (a). A starting unit vector aD is chosen. The distance to 
the limit state surface r D = r CaD) is determined as the solution to a linear programming problem 
(see end of Section 3). Moreover, the unit normal vector a1 to the limit state surface in u1 = rDaD 
is determined numerically. (Of course, attention should be paid to the possibility of having 
Identified a singular point on the limit state surface). The safety margin corresponding to the face 
of the safe set in this point is then determined by the reliability index {31 = a[aDrD and the unit 
normal vector ap With the new starting vector a1 = a1 the same procedure is repeated resulting 
in {32 = OIl a1r 1. The procedure Is continued until a stop criterion (ar al+1 =::: 1) is fulftlled. The 
same scheme may now be repeated with a new starting vector aD. In each step of the algorithm 
the result ({31' 011) is stored if the safety margin is not highly correlated (PI) = OIr aJ =::: 1) with a 
previously Identifted safety margin. 

Each sequence in the procedure Is Similar to the well-known Rackwltz and Bessler algorithm 
of identifying a ftrst order reliability index, see [14]. The deviations are, that only points on the 
limit state surface are conSidered, and that the result of each step in the algorithm is stored. The 
procedure is stopped by some convergence criterion based on the probability content of the 
Identlfted polyhedral set. This probability is given by the multi-variate normal distribution func
tion and can be evaluated approximately, e.g. in terms of upper and lower bounds [7,12]. The 
starting vector aD in each sequence of the procedure is generated by Simulation using a sampling 
density giving preference to directions corresponding to a lower fractile for a resistance variable 
and an upper fractile for a load variable. Alternatively, the starting vectors could be generated 
by some deterministic procedure, e.g. producing more or less uniformly spaced points on the unit 
sphere In u -space. The method can, in prinCiple, easUy be extended to load effect interaction in the 
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yield function. The extension, however, changes the optimization for r (a) to a nonlinear optimi
zation problem. 

Another plasticity theoretical way of establishing an upper bound on the reliability is by the 
method of linear combination of lower bound safety margins [7,17]. This method, referred to as 
the linear combination method, can briefly be outlined as follows. Consider a linear combination of 
lower bound safety margins from (5) of the form 

m 
L = L 'It g/(j)(U ; z) (14) 

t=1 

where the index function I (i) is equal to either 2i -1 (compression safety margin for member i) 
or 2i (tension safety margin for member i). It can be shown that L is an upper bound safety 
margin corresponding to a plastic mechanism if L is Independent of z, and the coefficients 'It all 
are non-negative, U 7]. The linear combination method uses this fact by establishing upper bound 
safety margins as linear combinations of the form in (14) using so-called dominant lower bound 
safety margins. The dominant lower bound safety margins are defined next. 

A plastic lower bound analysis is performed conSidering deterministic redundants z o' To 
each of the 2m lower bound safety margins in (5) is associated a reliability index 
13 i = cl>-1(p [gJ (u ,20) > 0]). The lower bound is sought maximized by maximizing the smallest 
reliability Index with respect to the deterministic redundants. The safety margins with reliability 
Index equal to the smallest value in the solution are the dominant lower bound safety margins. It 
can be shown that for normally distributed basic variables a value of the redundants exists such 
that there are at least n + 1 dominant lower bound safety margins [17]. 

Significant upper bound safety margins are searched by considering linear combinations of 
primarily the dominant lower bound safety margins. In other words, the dominant safety margins 
are taken as indicators for which members in the structure are likely to yield under plastic col
lapse. As opposed to failure tree reliability analyses based on successive elastic analyses, a plastic 
analysis is here used to identify members that are likely to be yielding in a significant mechanism. 
Details about the strategy for combining the lower bound safety margins can be found in [7,17]. 
The implementation in [7,17] is based on normally distributed physical baSic variables. The set of 
Significant upper bound safety margins determined In this way is expected to be representative 
also in the case of non-normally distributed physical basic variables. The linear combination 
method is presently being extended to handle load effect Interaction in the yield function. 

4.3 Reliability Calculation by Simulation 

The reliability 1 - PI or the probability of failure PI can be estimated by Monte Carlo 
simulation. In particular the method of directional Simulation [18,19] seems appropriate using the 
expression for the reliability in (8). The simulation is carried out by generating N outcomes 
ai' az, ... ,at, ..• ,aN of the unit vector A. For each outcome at the distance r (at) Is deter
mined by solution of an optimization problem. With 

Pt = 1 - xiCr (at )2) (15) 

PI Is estimated by P with mean value and variance 

VarlP] = 

~ 1 N 
E[P] - LPt 

N t =1 

1 N ~ 
N(N -l)tE(pt _E[p])2 

(16) 

(17) 

Results from this type of simulation can be found in the examples in a later section. In [19] other 
examples are given and a method of reducing the variance of the estimator by importance sam
pling is proposed. Furthermore it is shown how parametric sensitivity measures can be simulated. 



www.manaraa.com

423 

Example 1: Plane truss structure of 10 members 

01 

I. a .1 

2...0 
2 

t 

Fig. 1. Plane truss structure. 

An n =2 times redundant plane truss structure of m = 10 bars Is considered, Fig. 1. The yield 
forces of the 10 bars are assumed to be normally distributed with the following representation: 

0.2fJ.N for i = 1,2,3,4 

E[Nt-] = 1.0fJ.N for i =5,6 

0.8fJ.N for i = 7,8,9,10 r4fJ.N 
for i = 1,2,3,4 

E[N/] = 
1.6fJ.N for i = 5,6,7,8,9,10 

D[Nj -] D [Nj +] = 0.15 
E[Nj -] E[Nj +] 

All variables are assumed independen,t, except Nt - and N j +, for which p[Nj -,Nt +] = 0.90 for all i. 
The stiffness of the bars no. 1-4 are assumed to be the equal and 20% of the stiffness of the 
remaining bars. 

Three loading cases for the structure are considered. In load case I only the horizontal force 
Q 1 is acting, in load case II both horizontal forces Q 1 and Q 2 are acting, and in load case III the 
two vertical loads Q 3 and Q 4 are acting. The representation of the load variables are 

E[Ql]= O·lOfJ.N , D[Ql]= 0.03fJ.N 

E[Q2]= 0.05fJ.N ' D[Q2]= O.OlfJ.N 

E [Q 3] = 0.50fJ.N , D [Q 3] = O·04fJ.N 

E [Q 4] = 0.50fJ.N ' D [Q 4] = O·04fJ.N 

The correlation coefficient between Q 1 and Q 2 Is taken as 0.8, and the correlation coefficient 
between Q 3 and Q 4 as 0.5. 

The relJablllty of the truss structure with respect to plastic collapse is calculated by the 
different methods. The results of the lower and upper bound analysis are given in Tables 1-4. 
The exact relJability for this small structure can be found by considering all plastic mechanisms, 
and for all three load cases the upper bound result coincides with the exact result. 
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Table 1. Results of lower bound analysis. 
The numbers in parenthesis are the numbers of 

iterations in the non-linear programming problems. 

Load case I [Q1] II [Q1,Q2] III [Q3,Q4] 

Type of analysis {3HL {3G {3HL {3G {3HL {3G 

£last ic lower bound: 2.67 2.47 1.41 1.39 2.78 2.36 
Plast ic lower bound: 
max {3HL w.r.t. Z 3.79 3.37 2.72 2.33 3.08 2.43 
max (3HL w.r.t. X,Z 3.91 3.55 (66) 2.91 2.54 (l9) 3.10 2.45 (l2) 
max (3HL w.r.t. X,Y,Z 3.98 3.59 (l9) 2.91 2.54 (8) 3.28 2.64 (40) 
max (3G w.r.t. x,Y,z 4.09 3.96 (2l9) 3.32 3.11 (1l7) 3.19 2.74 (64) 

Exact result 4;34 3.36 3.20 

Table 2. Results of upper bound analysis for load case I . 

Mechanism no. Linear combinations Directional search Bars In yielding 

1 4.38 4.38 1- 8-
2 4.87 4.87 2- 4+ 
3 4.87 4.87 1- 3+ 
4 6.25 3- lO-
S 6.25 3+ 7+ 
6 6.49 6.49 7+ 10-
7 7.15 7.15 4+ 8+ 
8 8.22 4+ 6+ 10-
9 8.55 1- T 

{3G 4.34 4.34 

Table 3. Results of upper bound analysis for load case II • 

Mechanism no. Linear combinations Directional search Bars in yielding 

I 3.44 3.44 1- 3+ 
2 3.71 3.71 1- 10-
3 4.87 4.87 2- 4+ 
4 5.87 5.87 3+ 7+ 
5 6.13 7+ 10-
6 7.15 4+ 8+ 
7 7.88 3+ 4+ 
8 8.36 3+ 10+ 
9 8.55 1- 7-

{JG 3.36 3.36 

The results of the lower bound analysis are given In terms of the Hasofer-Lind reliability 
2m 

Index {3HL {equal to the reliability Index corresponding to the reliability mln[P {gl (U;Z) > om 
1=1 

and the system reliability index {3G. The only lower bounds close to the exact result are those 
obtained by optimizing the system reliability index. The elastic lower bound as well as the plastic 
lower bounds based on linear programming turn out to be significantly smaller than the exact reli
ability. Tables 2, 3 and 4 present results for the two Independent upper bound methods. The 
methods yield the same and exact result on the system reliability Index In all three load cases. 
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Table 4. Results of upper bound analysis for load case III . 

Mechanism no. Linear combinations Directional search Bars In yielding 

1 3.62 3.62 2- 8-

2 3.62 3.62 4- 8-

3 3.62 3.62 1- T 
4 3.62 3.62 3- T 
5 3.76 3.76 r 10-
6 3.76 3.76 4- 9-
7 3.76 3.76 3- 10-
8 3.76 3.76 2- 9-
9 7.08 7.08 5+ 8-
10 7.39 6+ 7- 8-
11 7.45 6+ T 9-
12 7.88 3+ 6+ 8-
13 7.91 4+ 6+ 10-
14 8.92 T 10+ 
15 8.92 8- 9+ 

(3G 3.20 3.20 

Experience from other examples as well indicates that the upper bound analyses give close upper 
bounds. implying that the methods Identify all significant mechanisms. 

5. APPLICATION TO OFFSHORE JACKET STRUCTURES 

The reliability analysis for the Ideal plastic structural models has been used to evaluate a 
reliability measure for jacket-type 'offshore structures under extreme environmental loading 
[8.20). In this context a computer analysis program RAPJAC (Reliability Analysis of Plastic Jack
ets) based on the reliability methods presented In the preceding sections has been developed. 
[21.22). The program can be used within the SESAM program system for structural analysis. 
(SESAM is a trademark of A.S. Veritas Sesam Systems. Norway) In particular. the SESAM 
preprocessor for generating geometry and topology of a structure as well as a utility program for 
calculating water particle kinematics can be applied in connection with the reliability analysis 
program. Links to other commercial general purpose structural analysis program systems are 
straightforward to implement. 

A first version of RAPJAC has been completed. The version handles spatial truss structures 
with the basic assumptions that the overall geometry of the structure is deterministic. and that 
the basic variables (yield forces of bars and nodal forces) are jointly normal. The latter assump
tion can be relaxed. since the present reliability analysis program can be coupled to general pur
pose probablllstic analysis programs handling any type of distributions like the PROBabilistic 
ANalysis Program PROBAN. [23) (PROBAN is a trademark of A.S. Veritas Research. Norway). In 
the reliability model all uncertainty is described by random variables and the program is aimed at 
reliablllty assessment with respect to an instantaneous overload. 

An automatic generation of nodal forces from waves and current is available. The forces are 
established on basis of a deterministic water particle velocity field calculated from a discrete. 
plane wave applying a specified wave theory and using specified values for the wave height. period 
and direction as well as current velocity and direction. Given such a velOCity field the joint dis
tribution for the nodal forces is found using the Morison formula as follows. Consider a point on 
the axis of a tubular member below the water surface. Let the water particle velocity in the point 
be v = (v 1'v 2.v 3) where the first two components are mutually orthogonal and orthogonal to the 
member axis. and the third component is parallel to it. Let the wave force intenSity per unit 
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length of the tubular member at the considered point be q = (q 1,q 2,q 3)' where q 1 and q 2 are 
orthogonal to the member axis and q 3 Is parallel to it. q Is then assumed given by 

q1 CD 11 CD 12 0 v 1.Jvt +vl 

h = tPw(D+2H) CD :21 CD :22 0 v 2.JV( +vl 

q3 0 0 CD ,33 V3 1V 3 1 

CM ,l1 CM ,12 0 V1 

+ : Pw(D+2H)2 CM •21 CM ,22 0 V2 (18) 

o 0 CM ,33 V3 

where Pw is the specific mass of the water, D Is the diameter of the tubular member at the con
sidered point, H Is the excess radiUS of the member due to marine growth, the CD parameters are 
drag coefficients, and the CM parameters are inertia coefficients. For the sake of simplicity the 
off-dlagonal elements as well as the third diagonal element In the two matrices are here taken as 
zero. Furthermore, the two diagonal elements In each matrix are assumed equal to CD and CM , 

respectively, Since the structural member Is tubular. However, it Is noted that the more general 
formula In (18) is implemented in RAPJAC. 

The coeffiCients CD and CM are assumed to be spatial Gaussian white noise processes over the 
structure. In a point, the two processes may be correlated and, typically, negative correlation ori
ginating from statistical uncertainty Is expected. The white noise assumption has been Introduced 
to reduce the computational effort when Integrating the force Intensities into nodal forces for 
which the second moment representation must be computed. Furthermore, the excess thickness H 
can be assumed to be a spatial white noise process. If this Is the case, the second moment represen
tation for the force intenSities q Is found approximately by a second order expansion in the mean 
point. This approximation Is not fully consistent with a modern FORMISORM analysis but has 
been Introduced to reduce the computational effort, and to maintain the assumption of normally 
distributed nodal forces. The approximation can be avoided by coupling to PROBAN, but In that 
case the number of basic variables increases drastically. In summary, the uncertainty In the wave 
and current forces Is modeled by random coefficients in the Morison equation together with a ran
dom diameter of the member. The mean value and standard deviation of the random variables at 
a given position can be specified as a piece-wise linear function of the elevation above the sea bed. 

Gravity and buoyancy loads on the truss structure are generated automatically as well. 
Loads on the deck structure, e,g. gravity loads, live loads and wind loads, can not be generated by 
the present program, but load models in terms of nodal forces on the truss structure must be set 
up by the user. 

The program provides lower and upper bounds on the reliability with respect to plastic col
lapse. A lower bound can be established as the reliability with respect to initial yielding under 
the assumption of elastic force distribution in the structure. Furthermore, the plasticity theoretl
cal lower bounds can be calculated. The upper bound analysis Is based on two different and com
pletely independent plasticity theoretical approaches comprising the directional search procedure 
and the method of combining lower bound safety margins. Finally, the reliability can be checked 
by directional simulation. Results from such simulations are given as an estimate on the reliabil
Ity together with an estimated coefficient of variation on the estimator. 

The program has been applied for research purposes. It is planned to be available for practi
cal purposes like comparisons between alternative design solutlQns, evaluation of the reliability of 
damaged structures, determination of the importance of the structural members and for 
Identification of an optimal design under a complete load description. It Is furthermore the 
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Intention to continue the Implementation of reliability methods for offshore jacket structures to 
the extent where real life sized structures modeled as spatial frameworks can be handled. 

Example 2: Spatial truss structure of 48 members 

20.0m 

22.5m 

t 
21828.1m 

t 
352m 

1 
39.1m 

Fig. 2. Spatial truss tower of 48 tubular bars. 

The model of a steel jacket offshore platform in Fig. 2 is considered. The structure is an 
n =12 times redundant spatial truss tower with m =48 tubular bars. All geometry variables, I.e. 
the dimensions of the structure given in Fig. 2 and the dimensions of the bars given in Table 5 are 
assumed to be deterministic. 

Table 5. Dimensions and mean tension yield forces of bars. 
The ratio between the diameter d and the wall thickness t 

is assumed to be d It = 60. for all bars. 

BarNo. d [m] Area [m l ] E[N/1 [MN1 

201-204 2.0. 0..210 67.20. 
205-20.8 1.5 0..116 37.0.7 
20.9-212 1.0. 0..053 16.80. 
213-224 2.5 0..324 103.78 
225-232 1.5 0..116 37.0.7 
233-248 1.2 0..0.74 23.73 

The yield forces and loads are assumed to be normally distributed with the following representa
tion: 

E[Nt-] = O.75E[N/1 given in Table 5 

D[Nt-] = D.15E[Nt-] , D[N/] = D.10E[N/] 

Furthermore it Is assumed that all yield forces are equi-correlated with correlation coefficient 0..5. 
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The external loading on the structure is due to gravity, live load, wind, wave and buoyancy. 
The following load models are applied: 

Gravity and live loads: Gravity and live loads from the deck structure are modeled by four 
vertical loads, one in each of the four top level nodes of the truss structure. Each force has a 
mean value 20 MN , a coefficient of variation 0.10, and the four forces are equi-correlated with 
correlation coefficient O.S. Gravity loads of the truss structure itself are referred to the nodes as 
single forces, and are calculated for.a specific mass of the tubular members of 7.8S·lcP kg 1m 3. 

Furthermore, additional gravity loads are included (e.g. from inside stiffeners in the members and 
in the joints) by assuming that the specific mass of the interior of the members is 0.2S·103kg 1m 3• 

The gravity forces on the truss structure are assumed deterministic. 

Wind load: Wind load on the deck structure is modeled by a horizontal and a vertical force in 
each of the four top level nodes. The magnitude of these forces are all assumed proportional to a 
random variable of mean 1.0 MN and with coeffiCient of variation 0.30. The direction of the wind 
model forces and the coefficients of proportionality are given in Fig. 3. The model is based on the 
assumption that the wind acts in a direction of 30 degrees with one side of the truss structure. 
Wind loading o~ the jacket structure itself is neglected. 

0.05 

Fig. 3. Illustration of direction and magnitude of nodal forces 
from the wind loading on the deck structure. 

Wave and buoyancy loads: The marine loading is calculated on baSis of the water particle 
kinematics for a Sth order Stokes theory wave of height h =2Sm and period T = 17s. The water 
depth is assumed to be d =70m , Fig. 4, and the direction of the wave is the same as the direction 
of the wind, Fig. 3. It is assumed that no current is present. A second moment representation for 
the nodal forces of the marine loading is determined under the assumption that the drag and iner
tia coeffiCients, CD and CM , in the Morison formula as well as the excess thickness of the tube 
walls due to marine growth, H, are spatial GaUSSian white nOise processes. The mean values and 
standard deviations as function of the poSition are given in Table 6. Finally, vertical determinis
tic buoyancy loads on the member parts under the sea surface are calculated and added to the 
respective nodal forces. 

The position of the wave is defined by the wave phase angle 9. For 9=0" the wave crest is 
above the first support of the structure (in the direction of the wave propagation). For 9""20" , 
the wave crest is in the middle of the structure. An elastic lower bound reliability analysiS and a 
plastic upper bound reliability analysis based on the method of linear combination of lower bound 
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Fig. 4. Illustration of truss structure and the example Stokes Sth order wave. 
Wave length L=392m, wave period T=17.Ss, and wave helghtH=2Sm. 

Table 6. Mean value and standard deviation of CD' CM and H. 
Coefficients are a function of elevation above sea bed. Between 

the given levels the quantities vary linearly, and above 75m they are 
constant. At a given position the three variables are assumed uncorrelated. 

Elevation z E[CD] D[CD ] E[CM ] D[CM ] E[H] D[H] 

OOm 1.0 0.4 2.0 0.3 O.OOm 0.000 m 
30m 1.0 0.4 2.0 0.3 0.01 m 0.002 m 
65 m 1.0 0.4 2.0 0.3 0.05m 0.010 m 
75 m 1.0 0.4 2.0 0.3 O.lOm 0.030 m 

safety margins are carried out for different values of the wave phase angle 9. Selected cases have 
been checked by directional simulation. The results are shown in Fig. 5. 

The difference between the reliability with respect to initial yielding and the reliability with 
respect to total plastic collapse is seen. For different positions of the wave, different failure modes 
are dominating. The same holds for the most likely member to yield in the lower bound analysis. 
Only a small difference between the reliability of the most likely element to yield and yielding In 
any member is observed in the extreme loading situation. This is due to high correlation between 
element safety margins in this case. The same tendency is observed in the upper bound analysis 
with respect to plastic collapse, where the reliability Index for the most likely mechanism is only 
slightly higher than the plastic system reliability Index. Finally It Is noted that the variation in 9 
of the reliability Index with respect to plastic collapse in this case follows closely the variation of 
the elastic system reliability index. 

6. CONCLUSIONS 

Recent developments for evaluation of the system reliability with respect to plastic collapse 
of ideal plastic structures based on the lower bound theorem are presented. The reliability model 
is formulated for spatial truss structures and a lower and an upper bound on the reliability are 
obtained. A program for plastic reliability analysis of offshore jacket structures has been 
developed. The program can be applied within a larger commercial program package for struc
tural analysis. In brief, the physical basic variables that can be modeled as random within the 
program are: compression and tension yield forces of bars (uncertainties in e.g. yield stress and 
cross sectional area, as well as model uncertainty), nodal forces describing external loading such 
as dead load, live load, wind load and wave and current load, parameters in the Morison equation, 
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Fig. 5. Results of elastic reliability analysls with respect to initial yielding and plastic upper 
bound reliability analysIs with respect to plastic collapse for different positions of the wave crest. 
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I.e. the normal and longitudinal drag and Inertia coefficients (when wave and current forces are 
generated automatically), marine growth thickness (when wave and current forces are generated 
automatically), buoyancy and gravity forces, and model uncertainty In wave and current forces. 

The following conclusions can be drawn: 

• The reliability methods for Ideal plastic systems provide a means of quantifying redundancy 
of structures. In common design practice such system effects are not accounted for. Further
more, the system reliability method can be applied for evaluation of the reliability of dam
aged structures, and for development of reliability based optimal design. 

• The upper bound on the reliability determined by a first order reliability method converges 
towards the exact reliability for Increasing amount of calculation. Often a close upper bound 
on the reliability can be established with a manageable calculational effort even for real life 
sized structures. 

• Simplifications must be introduced to make the calculation of a maximized lower bound on 
the reliability by a first or second order method practicable. Lower bounds based on one 
choice of the redundants are considered and three cases are undertaken: The vector of redun
dants Is deterministic, linear in the nodal forces, or linear in the nodal forces and the yield 
forces. The lower bounds resulting from an optimization of these linear combinations do not 
in general converge towards the exact reliability for increasing calculational effort. Results 
from random redundants can be significantly closer to the exact reliability than results from 
deterministic redundants. Typically, however, the lower bounds turn out to be somewhat 
smaller than the exact reliability, at least for a practicable amount of calculation. 

• The method of directional simulation provides a general and rather efficient means of estab
lishing a confidence interval on the desired reliability. 

• The plastic reliability methods considered herein are valid for truss structures under the 
assumptions that the geometry Is assumed deterministic, and that the baSic problem variables 
are normally distributed. The formulation of the reliability can be directly generalized to 
frame structures with load-effect interaction and the distributional assumptions above can be 
relaxed. However, the calculation methods based on linear programming In this paper then 
turns out to require non-linear programming. Alternatively, the optimization of the lower 
bounds and the identification of Significant upper bound safety margins can be carried out 
using a representative GaUSSian joint distribUtion, followed by a reliability computation 
using a general purpose probabilistic analysis program. 

• The reliability models considered are formulated in terms of random variables. Generaliza
tions to random process models should be considered. 
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SYNOPSIS 

In practice. the limit state criteria which are used to define the ultimate strength of structural 

components (Le.· members or joints) are often non-linear and multi-dimensional. and are associated 

with plastic flow. 

This paper shows how the effects of plastic flow can be allowed for in determining the reliability of 

structural systems. The method is illustrated with the analysis of a simple structure. 

NOTATION 

a,j' a,j. a 3 j elastic Influence coefficients at position j 

d member outside diameter 

Fy 

Fyi 

I y • I z • Iyz 

k, • k, • K3 

m~ 

m6j' m6mj' 

m6t j 

the event of the i th hinge forming 

the limit state function 

bending stress 

shear stress 

set of axial forces at the hinges 

yield stress in simple tension 

yield stress in simple tension at position 

moment of inertia 

constants 

elastic influence coefficients of moment 

at positon j for the intact structure 

elast Ie influence coefficients of moment at 

position j for unit load. unit moment. and 

unit torque for the structure with a hinge at 

position 6 

moment at position 

set of moments at the hinges 

moment at position I for the Intact structures 

plastic moment capacity 

change in moment at position 
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Incremental change In moment at position 

"corrected" moment at position I 

design value of the applied load 

applied load 

total applied load 

set of applied loads 

set of applied loads such that the stress state just 

reaches the limit state surface at only one location 

load applied after the first hinge has formed 

probability of failure at level 0, level 1 etc. 

plastic strain Increment at position I 

state of stress at position I 
state of stress on the limit state surface 

set of self-equilibrating forces 

tube wall thickness 

elastic Influence coefficients for torque at 

position j for the Intact structure 

elastic Influence coefficients for torque at 

position j for unit load, unit moment, and 

unit torque for a hinge at position 6 

torque at position I 
set of torques at the hinges 

torque at position I for the Intact structure 

change In torque at position 

Incremental change In torque at position 

"corrected" torque at position 

standard normal variable 

set of axial displacements at the hinges 

safety margin 

system reliability Index at level 0, level 1,etc. 

torsional rotation at position 

torsional rotation at position for unit load, 

moment and torque 

change In torsional rotation at position I after 

first hinge forms 

virtual displacements 

a non-negative unspecified scalar 

rotation at position 

rotation at position for unit load, moment and torque 

change In rotation at position I after first hinge forms 
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I. INTRODUCTION 

Most of the published research concerning the system reliability of structures has assumed idealised 

structural behaviour with either pinned joints and axially-loaded members, or 2-dimensional rigid 

jointed frames in which the axial load effects have been ignored. Some reports and papers have 

considered multi-dimensional failure criteria, but in general they have either approximated the curved 

interaction surface by straight lines e.g. Edwards et al (1985), or they appear to have neglected the 

flow rule condition e.g. Crohas et al (1984). 

Whilst it is not too difficult to include complex multi-dimensional failure criteria in a Level 2 type 

reliability program, it requires more effort to satisfy the associated flow rule. This paper explains an 

approach that can be followed for simple statically indeterminate structures subjected to time 

independent loads. The approach is illustrated with an example of a systems analysis of a simple 

structure using von Mises failure criterion. 

One aim of this investigation is that the basic method should be capable of being extended to treat 

multi-dimensional limit state criteria in more complex structures, in particular the axial load/bending 

moment interaction in the bracing members of shallow water jacket structures. 

2. BACKGROUND THEORY 

2.1 Material Behaviour 

Throughout this paper the structural material is assumed to be elastic-perfectly plastic. This 

assumption is used widely in general structural plastic analysis, and whilst the method explained in this 

paper for the successive elastic analysis approach does not specifically exclude the use of material with 

hardening behaviour the calculation becomes more complex. 

Furthermore, the structural members are assumed to have bi-Iinear moment-curvature relationships. 

The main advantage of this assumption is that the initial yield surface (i.e. the surface bounding the 

elastic region in stress-space) coincides completely with the limit state surface. This means that 

within the limit state surface the behaviour is elastic, and plastic strain changes can only occur from 

flow when the stress state lies on the limit state surface. It is also important to note that the yield 

surface is independent of the loading history. 

softening behaviour. 

This is not the case with material hardening or 

Unfortunately, the assumption that elastic moments are proportional to curvature until the limit state 

surface is reached (see Figs l(a) and l(b» tends to underestimate deflections and leads to a calculated 

frame behaviour that is stiffer than it should be. For practical purposes, Heyman (1971) suggests that 

the effect of this assumption may largely be offset by the strain hardening of structural steel at high 

curvatures. This is an area for further research. 
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.... " -- ~Hardening behaviour 

Strain 

Figure l(a): Idealised stress-strain behaviour. 

............ ~ Ha rd ening behaviour 
r-~~----------------~~-=-"""------

Curvature 

Figure 1 (b): Idealised moment-curvature behaviour. 

2.2 The Limit State Surface 

The limit state surface is defined by the limit state function, f(Q) , and it marks the boundary 

between between elastic behaviour and plastic behaviour at the section under consideration: f(Q) > 0 

for elastic behaviour, and f(Q) = 0 at the limit state surface. In a reliability analysis the limit state 

function is used within the definition of the safety margin Z. 

The elastic region enclosed by the limit state surface is always convex in basic variable space, and 

typical failure functions include von Mises and Tresca, as well as the empirical formulae used for 

axial load/bending moment interaction in some codes of practice (e.g. AlSC). 

2.3 The Flow Rule 

Consider a set of loads pE such that the state of stress just reaches the limit state surface at only 

one location. A statically determinate structure will collapse at the application of loads pE under the 

assumptions made in section 2.1. However, a statically indeterminate structure can carry increasing 

levels of loads P > pE up until a collapse mechanism forms. 
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For all sections i at which fCO} = 0 when P > FE, plastic flow will occur. The plastic behaviour 

at the section is given by the flow rule or normality condition which is well covered in plastic theory 

literature Ce.g. Martin, 1975}. 

The flow rule for section i may be stated as: 

or 

where dqr is a plastic strain increment. 

A is a non -negative unspecified scalar 

OT is the state of stress at a particular point on the limit 

state surface. 

or 

is the partial derivative of the limit state function f evaluated at the stress state QT· 

The flow rule implies that the vector of plastic strain increments, dqP, has the direction of the 

outward normal to the limit state surface at stress state aT. 

Typical behaviour is illustrated in Figure 2. Until the limit state surface is reached the behaviour is 

piecewise-linear elastic. Plastic flow occurs at the section once the limit state surface is reached. 

Then the stress state satisfies the limit state function and alters according to the flow rule. 

Inaccessible region 
f (0) >0 

Piecewise - linear 
elastic behaviour 

----+-~---------+-=~------------~~~01 

state surface 
f (0)=0 

Figure 2: 2-Dimensional limit state surface in stress space. 
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3. SYSTEM RELIABILITY 

3.1 The system reliability approach 

In this paper all the variables are assumed to be time independent. The structure is loaded with a 

system of loads which are assumed to be random variables. The resistances at sections within the 

structure may be considered to have uncertain values which, according to circumstances, may be 

assumed to be: 

(a) uniform throughout the structure, 

(b) uniform throughout each member and independent between members, 

(c) independent at discrete sections throughout the structure, 

(d) obeying some complex correlation pattern. 

As with a deterministic plastic analysis the positions of possible plastic hinges must be chosen. 

However, more positions must usually be considered within a reliability analysis since the possible 

hinge positions do not only depend on the structural form and type of loading, but also on how the 

resistances are assumed to vary within the structure. Thus possible hinges should be included at 

positions of peak moments for every independent resistance variable. The reliability of the structure 

is then based on the probabilities of forming plastic hinges at these positions. 

Generally, the aim of a system reliability analysis is to determine the probability that a structure will 

collapse. This can be found directly by determining the probabilities of forming individual collapse 

mechanisms. A number of techniques have been developed to determine the most significant 

mechanisms, of which perhaps the most rigorous is a method developed by Ditlevsen and Bjerager 

(1984). 

There are disadvantages to a direct collapse mechanism approach and a number of methods have been 

developed (reviewed in Baker, 1985) to identify the significant collapse mechanisms using a successive 

elastic analysis approach. All of these methods are very similar. Failure sequences leading to 

collapse are evaluated using successive elastic analyses as each hinge forms, and a failure tree of 

signifiant sequences is produced which is used to estimate the overall system reliability. 

[n Thoft-Christensen's j3-unzipping method (1984) a system reliability can be evaluated after each 

level of successive analysis. 

reliability. 

Each successive result is a better estimate of the overall system 

[n this paper a successive elastic analysis approach and a direct collapse mechanism approach have 

been used to determine the system reliability. Both methods have been described by 

Thoft-Christensen (1984) but in this paper a more rigorous treatment of the multi-dimensional limit 

state surface has been undertaken. 
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3.2 System reliability using successive elastic analyses to identify 

collapse mechanisms 

The intact structure is analysed with separate load cases for each independent set of loads, i.e. one 

load case for each independent loading variable. At each possible hinge position the member stresses 

are obtained for each load case, and the safety margins are formed from the limit state functions. 

The safety margins are used in a Level 2 reliability method to give probabilities for "first-failure" at 

each hinge. 

The structural model is then modified by releasing freedoms at the position of one of the most likely 

hinges to form. The modified structure is re-analysed for a set of loads proportional to the original 

set, (LlP) , and separately for unit forces (or moments) at the hinge corresponding to each released 

freedom, (.15). Each of the above analyses for the modified structure has to be treated as a separate 

load case when using computer analysis. 

where 

Stresses Q at any position in the structure are given by: 

are elastic Influence coefficients of stress obtained 

for the analysis of the Intact structure with loads pE 

are coefficients obtained from the successive 

analyses for loads (LlP) and (.1s) respectively 

are constants 

At the plastic hinge, the limit state function and the flow rule must continue to be satisfied. Thus 

by considering the deformations, rotations and stresses at the hinge, expressions can be written for the 

constants k" k2 and k 3 • 

New safety margins can then be written for the onset of plasticity at other positions within the 

structure. They will in general be functions of the loading variables, the resistance property at the 

position in question and the resistance of the first hinge. 

The procedure can then be repeated to consider the onset of plasticity at another section and this can 

be repeated until a collapse mechanism is formed. 

3.3 The system reliability from the collapse mechanisms 

In some situations it is much more efficient to determine the system reliability directly from the 
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collapse mechanisms. 

Consider a collapse mechanism for the structure. Using the principles of virtual work, an equation 

can be written for the mechanism of the form: 

p M o + T 'Y + F x 

where P, M, T, F are the applied loads and respective moments, 

torques and axial forces at the hinges, 

are the virtual displacements of the loads P, and 

0, 'Y, x are the corresponding rotations and axial deformations at the hinges. 

The work equation can be rewritten with functions of the applied load and resistance variables using 

the following relationships. 

Firstly, the geometry of the structure imposes constraints on the virtual displacements and provides 

relationships between O's, 'Y's, x's and o's. As with normal plastic analysis these relationships can 

either be found by inspection, by plotting the virtual displacements, or Watwood (1979) offers an 

analysis method. 

Secondly, equilibrium conditions can be used to relate the applied loads to some of the hinge forces 

(or moments). 

Thirdly, the limit state function must be satisfied at each hinge, so relationships can be written 

between M's, T's F's and the resistance variables. 

Finally, the flow rule must also be satisfied at each hinge, i.e. 

x. 
1 

ar. 
1 

etc. 

For simple examples the work equation can be written explicitly in terms of the applied loads and 

resistance variables. In general this will not be possible, but enough equations can usually be written 

so that a solution can be obtained. 

The probability of failure for other collapse mechnisms are found in the same way, and the overall 

system probability for collapse of the structure is found by evaluating the union of events for all the 

individual mechanisms. 
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4. EXAMPLE; THE RIGHT ANGLE BENT 

4.1 General 

To illustrate the procedures discussed in the previous sections the structure shown in Figure 3 was 

analysed. Although it is only a simple two member structure it clearly demonstrates interaction in a 

two dimensional stress space, and it is well suited to a simple system analysis in which 2 or 3 hinges 

can form before collapse. 

The structure was Inspired by an example analysed by Thoft-Christensen (1984) in which the members 

were I-beam sections and for which the moment-torque interaction could be neglected. Most of the 

parameters and section properties have been retained in the example below except that the members 

are now tubular sections and interaction effects are properly considered. The equivalent dimensions 

for the tube are d = O.3222m and t = O.0046m. These dimensions are somewhat impractical but 

this is not important if local and overall buckling behaviour are neglected. 

Although this structure is not directly relevant to offshore structures the principle of the analysis can 

be extended for use in more general situations. 

4.2 Description of the structure 

Figure 3; Sketch of the structure 

The 2-D frame is acted upon by an out-of-plane point load P. All the joints and supports are rigid 

and both members consist of uniform tubular sections with the following deterministic properties; 

X-sectional Area 4.59 X 10- 3 m2 

Iy - I z 57.9 X 10-6 m4 

Torsion, Iyz 115.8 X 10-6 m4 

Young's Modulus 2.1·x 108 kN/m2 
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The material is assumed to be elastic-perfectly plastic, and plastic hinges can only form according to 

von Mises criterion in the 6 positions shown: 

fb 2 + 3 fv 2 '" Fy2 

where fb M/td 2 

(neglecting vertical shear) 

Fy yield stress in simple Tension 

and where d is the tube diameter, and t is the wall thickness. 

The following are considered as normally distributed random variables: 

E[P] 

E[Fy] 

60kN C of V for [P] 

282.5 x 10' kN/m 2 C of V for [Fy] 

Three cases are to be considered: 

a) Fy uniform throughout the structure 

0.1 

0.1 

b) Fy uniform within members and independent between members A and B 

c) Fy independent for all 6 possible hinge positions. 

4.3 The reliability of the structure at level I (Le. one hinge to form) 

Using von Mises criterion the safety margin Zj can be written for any position (j 

F2._ 
YJ 

td 2 

1 ' - 3 

I, 2 ... 6). 

(1) 

where mEj and tEj are the elastic moment and torque at position under a unit value of load P. 

The results of the analysis at the corresponding failure boundaries have been mapped into standard 

normal space (u-space) and are plotted in Figure 4. 

been superimposed in the one graph. 

For convenience the 5 failure surfaces have 

Case a) Yield stress uniform throughout the structure 

In this case where all the yield stresses are equal, the event space can be represented in 2 

dimensions (up and UFy). Figure 4 shows that plasticity must occur first at position 6. If a hinge 

were to develop first elsewhere it would violate the yield criterion at 6. 

Therefore, the reliability of the structural system at Levell is (lI~h 2.4698 

Case b) Yield stresses uniform within members and Independent between 

members A and B 

Fy , independent of F y , 
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From Figure 4 (which should now be plotted in three dimensions as there are 3 independent random 

variables) it can be seen that plasticity would occur in member A at position 1 before position 2; 

and it would occur in member B at position 6 before positions 3 or 4/5. As the yield stresses are 

independent between the members plasticity can occur either at position 1 or position 6, although it is 

more likely to occur at 6. 

Hence, the failure probability of the system at Level 1 is given by: 

Therefore the reliability of the system at level 1 is: 

Case c) Yield stresses independent at all 6 positions 

A hinge has a chance of occurring at any of the 6 positions, although it is most likely to occur first 

at position 6. 

.. .. 
! ... 
" .. 
. >' 
(; .. • :J a 
> 
• .~ 
"0 
ao • c 
I 
15 
c 

Therefore, at level 1 pl~l - PIE 1 U E2 U E3 U E4 / 5 U Esl 

-2.0 

UFyi lIor i=1,2,3,4,5,61 

&.0 

Up 
5.0 

3.0 

2.0 

-1.0 0 

Figure 4: Plot in standard normal space for the onset of plasticity of the intact structure. 
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4.4 The Reliability of the Structure at level 2 (Le. Two Hinges to Form) 

Hinge first at Position 6 

Consider the behaviour of the structure once the first hinge has formed, assuming that this is at 

position 6. When the hinge just forms it must obey von Mises criterion: 

where 

F 
yG + 

mW and tW are elastic influence coefficients for the intact structure. 

pE is the load required to just form a hinge first at position 6. 

(2) 

For a further increase in load, the stress state at position 6 must still satisfy the limit state function, 

and the additional load will cause rotations at the hinge which must obey the flow rule. Plastic flow 

causes the stress state to move around the limit state surface, and the total change in stress state due 

to plastic flow depends on the total increase in load 1lP, where the total load pT = pE + .1P. 

Unfortunately, there is no simple analytic method to evaluate the change in stress state resulting from 

plastic flow. However, there are a number of iterative and incremental methods which are suitable 

for use in system reliability analyses. Sloan (1987) outlines two of the methods currently used in 

non-linear finite element analysis programs. The method described here is based on the Euler 

integration scheme, although some of the results given later were evaluated using a different method. 

For a small increment of load, bP, the stress state is assumed to move initially to some point along 

the tangent to the yield surface. The normal (and hence tangent) can be evaluated from the flow 

rule: 

(3) 

Where bM G and bT G are constraining forces applied to the hinge such that the flow rule is satisfied, 

and dOG and d'Ys are incremental rotations at the hinge. 

For a small increment 

dOs 8~ bP + Om s bM s + ot s bIG (4a) 

d'YG 'Y~ bP + 'Yrrf bM s + 'Y~ bIG (4b) 

Equations 3 and 4 can be solved for bMG and 6T G' 
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Obviously, this new stress state lies outside the region bounded by the yield surface. Therefore, the 

stresses must be "corrected" to satisfy the yield condition. There is no unique method to scale the 

stresses, but the simplest is to assume that the correction is applied in a radial direction. 

i.e. rs + 6T s] T' - M' (5) s s 
Ms + 6Ms 

Fy~ - r' r [ T' 
t: 2 + rtd:/2 r (6) 

E'luations 5 and 6 are then solved to determine the stress state after a load increment hI'. The 

procedure can then be repeated for further increments 61'. 61' is usually chosen as a factor of ~p. 

and obviously the accuracy of the method depends on the size of the sub-increments. One increment 

can be used although this will lead to a small over-cstimation in the effect of plastic flow. 5 or 6 

increments should in general produce reasonable accuracy for use in a system reliability analysis. 

Once the stress state has been evaluated for the addition of the total load, the total change in 

moment and torque at the hinge due to plastic flow is: 

.1M s = M~ - Mt; 

.1T s = T, - T~ 

The safety margin for any other position can then be written: 

1 
F2 ---
yj - (td 2 )2 

3 

where mr' tT are elastic influence coefficients for the undamaged structure. 

msj' tsj' msmj' tsmj' mstj' tstj are elastic influence coefficients for the structure with a hinge at 

position 6. 

Pos. Case a) Case b) Case c) 
Fy Unl form Fy Independent Fy Independent 

between members 

1 4.613 5.974 5.974 

2 8.780 9.248 9.248 

3 8.884 8.884 9.180 

4/5 5.503 5.503 7.043 

Table 1: Reliability indices at level 2 given a hinge has (ormed at position 6 
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Case a) Yield stress uniform through the structure (with hinge at position 6) 

By inspection of the results in Table 1, plasticity can only occur at position 1 given that a hinge has 

already formed at position b. Therefore for level 2 the system reliability index if fJ!.§1 = 4.613 

Case b) Yield Stresses uniform within members and independent between 

members A & B (with hinge at position 6) 

Dy inspection of the results for case b) in Table 1, it can be seen that plasticity would occur in 

member A at position 1 before position 2; and it would occur in member B at position 4/5 before 

position 3. Therefore, a second hinge can form at either position 1 or position 4/5, and the 

corresponding reliability indices are: 

Hinge at 6 followed by hinge at 1: 

Hinge at 6 followed by hinge at 4/5: 

Case c) Yield stresses independent (with hinge at position 6) 

5.974 

5.503 

A hinge can form at any of the positions given in Table 1, although it is most likely to form at 

position 6 with (J = 5.9735. 

More detailed results are given in Turner (1986) and and results are also given for a hinge forming 

first at position 1 and also at position 4/5. 

4.5 The enumeration method for collapse 

The system reliability can be evaluated at level 3 in a similar manner to level 2 and the enumeration 

method can be followed up until structural collapse. The failure tree is shown for the 3 cases in 

Figs. Sa, 8b, and Sc. 

Fig 5 is a part plot of the Moment-Torque interaction curve which shows the stress path from zero 

load to a collapse mechanism with hinges at positions 1 and 6. (The figure is drawn for FYI = F Y 6 

= 161.9 X 10 3). 

The stress path for position 6 is linear-elastic from 0 to C until it reaches the limit surface and a 

hinge forms. Then under plastic flow it moves from C around the limit surface to D when a hinge 

forms at postion 1. Then it moves from D to E when collapse occurs. 

The stress path for position 1 is linear elastic from 0 to A when a hinge occurs at position 6. The 

stiffness of the structure changes and the stress path is linear elastic to B, when it reaches the limit 

surface. Then it moves under flow to E when collapse occurs. 
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Figure 5: Torque stress/Bending stress interaction curve 

4.6 The Mechanism Approach 

Mechanism 1: Hinge formation at positions 1 and 6. 

Figure 6: Mechanism 1. 

From virtual work: 

SPO/2 

Now 8 1 = 1'6 = 0 6 = 1'1 = 8 

At each hinge the flow rule must be satisfied. 

and 1'1 
TI 

6AI---'--
(rtd 2/2) 

(7) 
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Also the stresses at each hinge must satisfy von Mises criterion. 

+ 

After rearranging and substituting in equation (7) the safety margin can be written as: 

Z = 1.31948 td 2 Fy , + 1.31948 td 2 FY6 - 2.500P 

The results for this mechanism are given in Table 2. 

Mechanism 2: Hinge formation at positions 1, 4 and 6. 

1 ..... =---+-_ 

3 

Figure 7(a): Mechanism 2 

6 
4 
3 

Figure 7(b): Rotations for mechanism 2 

From virtual work: 

2.5 P06 M,O, + T,'Y, + M404 + T4'Y4 + M606 + T6 'Y6 
Now °4 86 - 'Y, 

0,£1 86 £1, 2 + 'Y, £1'2 i.e. 28, = °6 
+ 'Y, 

0, 'Y6 + 'Y4 
Also from the flow rule: 

1.90986T\ 

(8) 
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Using von Mises Criteria: 

From equilibrium: 

M4 - T, 

And o (9) 

Also the basic virtual work equation, equation (8), can be simplified by substitution of the geometric 

and equilibrium constraints to give: 

o - -T, + 2M4 + Ms - 2.5P (10) 

The safety margin can then be written by adding 2 equations (9) and (10) together to give: 

Z M, + 2M4 + 2Ms + T s - S.OP 

Mechanism 
Case a) Case b) Case c) 

Fy Uniform Fy Independent Fy Independent 
between members 

Mechanism 1 5.333* 7.030 7.030 
Hinges at 1+6 

Mechanism 2 5.080 6.018 7.550 
Hinges at 1, 

4/5 + 6 

Table 2: Reliability Indices for mechanisms 1 and 2 

.. The results for mechanism 1 case a) are invalid because it can be shown that a further hinge 

would form at position 4 before collapse occurs. 

4.7 The Results 

No particular method has been used to truncate the branches of the failure tree; only obviously 

insignificant paths have been truncated. The system is dominated by one or two failure paths and 

any of the available truncation strategies would have reduced the computation and produced acceptable 

results. 

Unfortunately the probabilities of failure for many of the events immediately prior to collapse could 

not be evaluated. The RELY program would only converge to design I'0ints in physically inadmissible 

regions if the initial starting values for the program were in the correct region of the event space, 

i.e. close to the design point. Satisfactory initial values could not be found for many of the events 

immediately prior to collapse. 
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Case a) Yield stress uniform throughout the structure 

COLLAPSE [6 .... 1 .... 4/5] 
1----71 

5.080 

Figure 8(a): The failure tree for case a) 

Case b) Yield stress uniform within members and Independent between members 

A and B 

COLLAPSE [6 .... 1] 
r--------~ 7.030+ 

COLLAPSE [6 .... 1 .... 4/5] 
1----71 

6.019 

COLLAPSE [6 .... 4/5 .... 1] 
I"----=~ 6 . 0 19 

COLLAPSE [6 .... 4/5 .... 3] 

6.957 

COLLAPSE [1 .... 6 .... 4/5] 

6.019 

COLLAPSE [1 .... 6] 
~------~ 

7.030+ 

Figure 8(b): The failure tree for case b) 

+ This mechanism cannot physically occur for values of yield stress at the design point. 

* Design point is in a physically inadmissible region. 

N/A Results not available 
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Case c) Yield stresses independent 
COLLAPSE [6 ~ 1) 

~------------~ 
7.030 

I---~ 
COLLAPSE [6 ~ 1 ~ 4/5) 

7.550 

COLLAPSE [6 ~ 4/5 ~ 1) 

7.550 

COLLAPSE [6 ~ 4/5 ~ 2) 

10.520 

COLLAPSE [6 ~ 4/5 ~ 3) 

10.736 

1 

COLLAPSE [1~ 4/5 ~ 6) 

7.550 

g COLLAPSE [1 ~ 6) 

7.030 

COLLAPSE [1 ~ 6 ~ 4/5) 

7.550 

COLLAPSE [4/5 ~ 6 ~ 1) 

7.550 

COLLAPSE [4/5 ~ 1 ~ 6) 

7.550 

Figure S(c): The failure tree for Case c) 

* Design point in physically inadmissible region. 

N/A Results not available 

Tables 3a, 3b and 3c show the system reliabilities for the three cases. Probabilities of failure for the 
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Tables 3a, 3b and 3c show the system reliabilities for the three cases. Probabilities of failure for the 

significant failure paths have been evaluated at each level of analysis, (i.e. as each hinge forms) and 

the union of these has been evaluated to obtain the system reliability at each level. More detailed 

results are given in Turner (1986). 

For case a) in which the yield stress is uniform throughout the structure, there is only one 

permissible path to failure. The probability that one hinge will form in the structure is approximately 

0.0068, however, the structure can carry a considerable increase in load and the probability that the 

structure will go on to collapse is only 0.0020 x 10- 3 (i.e. 2.0 x 10- 6). 

For case b) in which the yield stresses within each member are uniform there are more possible 

failure paths. However, one is dominant. The probability that the structure will collapse is even less 

at 8.8 x 10-' 0. 

For case c) in which the yield stresses are independent throughout the structure there are many more 

possible failure paths. The dominant failure path to collapse is different from the previous cases, and 

the probability that the structure will collapse is 1.0 x 10-' 2. 

One interesting point is that if the structure had been designed elastically (using the AlSC) with a 

nominal yield stress of 225 N/mm 2 (i.e. 2 standard deviations from the mean), the maximum 

allowable design load would be 34 leN. The collapse loads at the design points in the above cases 

are all over 72 kN. 

It should just be mentioned that the system reliabilities at level 3 for cases b) and c) in Tables 3b 

and 3c lire not lower bounds on the overall system reliability. This is because a full set of results 

was not evaluated. 

Case a) Yield stress uniform throughout the structure 

Levell Level 2 Level 3 Mechanism 

(j[~ts - 2.470 (j[Hs - 4.613 (j[~ts - 5.078 (jsys - 5.080 

Table 3a: The system reliability indices for case a) 

Case b) Yield stresses uniform within members and independent between members A and B 

Level 1 Level 2 Level 3 Mechanism 

(j[~ts - 2.470 (j[~ts - 5.493 (j[~ts - 6.350 (jsys - 6.019 

Table 3b: The system reliability indices for case b 
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Case c) Yield stresses independent 

Level 1 Level 2 Level 3 Mechanism 

~[~~s - 2.470 ~[~~s - 5.974 ~[~h '" 7.550 ~sys - 7.028 

Table 3c: The system reliability indices for case c) 

DISCUSSION AND CONCLUSIONS 

The purpose of this work was to investigate the use of multi-dimensional failure criteria 

with the system reliability analysis of structures. However, before concluding, a number of 

questions must be considered: 

1. Is it necessary to use multi-dimensional criteria? This of course depends on the 

structure, the type of loading, and the failure function itself. Where interaction does 

occur its significance should be investigated, because the effect can be considerable. For 

instance, the effect of moment on an axial brace can seriously reduce the axial load 

capacity of the member. It is obvious that if interaction is ignored the strength of the 

member, and hence of the structure, will be overestimated, and the resulting probablity of 

failure will be unconservative. 

2. If the failure surface is non-linear can it be linearized? Again this depends on the 

circumstances. Consider the formation of the first hinge in the structure analysed in this 

report. At the design point for position 6 a load of 68.5 kN is required for a hinge to 

form. If the failure surface had been linearized the load required would only be 51.2 

kN. Thus the strength of the member and structure is underestimated, and the resulting 

probability of failure will be conservative. 

3. Can the flow rule be ignored? The effect of plastic flow at the hinges can cause a 

significant redistribution of moments and forces within the structure. Again consider the 

structure analysed in the report. For case (c) with independent yield stress, the bending 

moment/torque ratio at position 6 when the first hinge forms is 8.36; this changes to 

2.82 at collapse. The reliability index for the formation of a hinge at position 1 given 

that a hinge has already formed at position 6 is 5.974. If the flow rule had been 

ignored, so that the moment/torque ratio at position 6 remained constant at 8.36, the 

corresponding reliability index would have been 5.770. This may. be considered to be an 

insignificant difference, except that the structure cannot carry any further increase in load, 

and so this must be considered to represent a collapse mechanism. The reliability for this 

system is also 5.770. There is a considerable difference between this value and the 
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corresponding value of 7.031 in Table 3c in which the flow rule is allowed for. It should 

also be noted that if the flow rule is neglected the sequence 6 -> 1 -> 4/5 could not form. 

In this example the probability of failure is overestimated if the flow rule is ignored. In 

general this will usually be the case. However, if the flow rule is neglected, failure 

sequences that are derived may be incorrect, and mechanisms may be found which cannot 

physically occur. Thus any results for structural collapse from such an analysis should be 

carefully investigated. 

The main advantage of the analysis method is that it is rigorous given the assumptions of 

perfectly-elastic plastic behaviour and bi-linear moment-curvature relationship. Hence, 

there is no additional concern over how conservative or unconservative the results are, as 

would be the case if the flow rule had been ignored. The method is flexible and can be 

used with both a successive elastic analysis approach and a direct mechanism approach to 

determine the probability of collapse. Both aproaches result in the same overall 

probability of collapse. 

One apparent disadvantage of the method is the amount of calculation and equation 

manipulation that is required to determine the reliability of each event. However, the 

successive elastic analysis can be automated. The equations for the failure functions and 

plastic flow conditions can be easily generated using values for stresses and deflections 

obtained from successive elastic analyses. Unfortunately, the collapse mechanism approach 

is not so readily automated. Although, once the equations are determined, they can be 

readily solved. 

The main disadvantage of the method is that it does not always converge for failure 

sequences that involve unloading, or that have design points in physically inadmissible 

regions. It has been shown that it is important to obtain all the values. However, 

approximate results can usually be obtained which are often good enough. 

Therefore, considering all these points, since the method can be partly or fully automated, 

it is capable of being used to treat multi-dimensional failure criteria in more complex 

structures. The method is rigorous and can produce accurate results. Unfortunately, many 

of the approximate and simplified methods that can be used as an alternative to 

multi-dimensional failure criteria will produce inaccurate and misleading results. 

Until now, the residual stresses have been assumed to be zero. Real structures are 

subjected to residual stresses which may be considerable. Their 'effect can be to greatly 

distort the component reliabilities at the earlier levels of a successive elastic analysis 

approach. Hence, the failure sequences can also be in error whether or not the flow rule 
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has been allowed for. Therefore, although each subsequent level of analysis is a better 

estimate to the overall system reliability at collapse, this point must always be borne in 

mind. 

Finally, it is most important that the results of any reliabilty analysis are interpreted with 

care. 
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APPENDIX 

Evaluating the change in stress state due to plastic flow 

The evaluation of the change in stress state resulting from pi 

problem which is being widely researched. The problem frequently occurs in non-linear 

finite element programs in which the stress state may have to be evaluated at many 

thousands of locations within a structure. 

solution method. 

Unfortunately, there is no simple analytic 

However, there are a number of approximate iterative and incremental methods which are 

suitable for use in system reliability analyses. A simple method was used in this paper, 

but for the latest published research see Sloan (1987) who outlines two of the methods in 

current use, and suggests some improvements. Perhaps the most well-known and widely 

used method is the first-order Euler integration scheme. 

The first step in the Euler scheme (and any other method) is to determine the initial 

stress state at which yielding begins. In the paper this corresponds to solving eq. 2 in 

section 4.4. The problem is then to determine the change of stress state that occurs for 

a further increase in load. 

The enumeration approach to system reliability analysis discussed in this paper leads to a 

slightly different problem to that which is generally encountered in non-linear FE analysis 

programs. In this paper the structural model is modified when a hinge forms and is then 

re-analysed for separate load cases as discussed in section 3.2. Hence, with this method 

there is no prescribed strain increment. Instead, it is assumed here that for a small 

increment in load the stress state initially moves to some point along the tangent to the 

yield surface. 

Obviously, for elastic perfectly plastic materials, another point along the tangent will lie 

outside the region bounded by the yield surface. Therefore, the stresses must be 
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"corrected" to satisfy the current yield condition. There is no unique method to scale the 

stresses. The simplest method is to assume that the correction is applied in a radial 

direction. This method leads to a small over-estimation in the effect of the plastic flow, 

and a better method is to assume that the correction is applied along a direction which is 

normal to the yield function. This method is usually done iteratively, and often only the 

first iteration is performed. 

In the Euler scheme the load M is divided into a number of smaller increments, or sub

increments, and the stress state is usually up-dated after each sub-increment. Obviously 

the accuracy of the scheme depends on the size of the sub-increments. In FE programs 

the number of sub-increments, n, is typically of the order: 

n = 1 + 20 lTR/uy 

where 

uy is the yield stress 

lTR is the approximate change in stress caused by M. 

More general material behaviour assumptions are easily modelled in the Euler scheme. 

The yield condition can be up-dated after each sub-increment of load to allow for strain 

hardening, work hardening etc. The stress-state after each sub-increment is then 

"corrected" to satisfy the current yield condition. 
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SENSITIVITY MEASURES IN STRUCTURAL REUABIUTY ANALYSIS 

ABSTRACT 

Peter Bjerager & Steen Krenk 
Department of Structural Engineering, Building 118 

Technical University of Denmark, DK-2800 Lyngby, Denmark 

Both reliability and sensitivity measures are important results of a structural relia
bility analysis. For reliability problems of the random variable type the measures can be 
computed approximately by first and asymptotic second order reliability methods. In 
this paper the parametric sensitivity of the most likely failure point is studied. A formula 
for the sensitivity of the unit normal vector to the failure surface in this point is derived. 
The parametric sensitivity of the first order reliability index is considered as well, and 
examples illustrating the results are given. Finally it is shown how parametric sensitivity 
factors for the probability of failure can be estimated by directional Monte Carlo simula
tion. 

INTRODUCTION 

A structural reliability analysis provides reliability measures and, often equally im
portant, sensitivity measures. A set of useful sensitivity measures consists of the 
parametric sensitivity factors. Let the reliability be measured in terms of the reliability 
index PR =~-l(1-PF)' where PF is the probability of failure and ~-1 is the inverse stan
dard normal distribution function. A parametric sensitivity factor with respect to the 
deterministic parameter (J is then equal to the derivative of the reliability index PR with 
respect to this parameter, i.e. dPRlde. Typically, (J is a deterministic physical basic vari
ables, e.g. a structural dimension, or a distributional parameter such as mean value or 
standard deviation. Usually more than one parameter enter a reliability problem. Each 
sensitivity factor is then defined as a partial derivative. 

The parametric sensitivity factors for the reliability index have a number of impor
tant practical applications. The following can be mentioned: 

• Within reliability based design a structure is designed by choosing the values of a 
set of design parameters 8 such that the reliability of the structure is equal to a 
specified/codified value Pc. After the initial choice of the design parameters and a 
corresponding reliability analysis, guidance for the next choice 8+118 can be ob
tained by the requirement that PR(8+118) should be equal to Pc using 

PR((J+ll8) ... PR(8) + ~ a{J~(8) M;. (1) 
• • 

• In reliability based optimization of structural design, construction, maintenance 
and inspection where the optimal solution, e.g. design or inspection strategy, is 
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found by solving a mathematical programming problem. The partial derivatives of 
the reliability with respect to the decision parameters are then needed in the com
putations. 

• In a parameter study of the reliability where Eq. 1 can be applied to interpolate 
between parameter values for which a full reliability analysis is performed. 

• Within reliability updating where the reliability is updated e.g. after inspection, pro
babilities conditioned on the new information must be calculated. For information 
that can be expressed as a function of a random vector being equal to zero, the con
ditional probability can be formulated as the ratio between parametric sensitivity 
factors, [7]. 

For a structural reliability problem of the continuous random vector type the relia
bility index (JH is efficiently, though approximately, computed by first or second order 
reliability methods, [5,6]. A parametric sensitivity factor d(JH/dB can then be calculated 
numerically by repeated computations of the reliability index. However, without repeat
ing the possibly expensive reliability analysis, the factors can be calculated more direct
ly by use of asymptotic results derived in [4]. 

Part of the common results of a first order reliability analysis includes the unit 
directional vector a to the most likely failure point on the failure surface. Also the 
parametric sensitivity of this vector turns out to have important practical applications 
of which two are mentioned here: 

• In structural system reliability analysis where each component is described by a re
liability index (JH,i and a unit normal vector ai' Dependence between component i 
and j can be described by the correlation coefficient given as the scalar product 
ala;. The system reliability can 'be quite sensitive to the value of this correlation 
coefficient. This is for example the case for a series system of highly correlated com
ponents of equal or almost equal reliabilities. Thus, the change in ai caused by a 
change in a parameter (J may be significant in a system reliability analyses. 

• In out crossing problems where the failure surface is described in terms of a random 
vector. Such a problem may be dealt with by combining FORM/SORM and results 
from outcrossing analysis. For this task, the derivative of the unit normal vector 
with respect to a deterministic parameter is needed, [8J. 

In this paper an expression for da/d(J is derived. This sensitivity factor can then be 
computed without numerical differentiation, i.e. without repeated reliability analyses. 
The result is based on an analysis of the derivative du-/dB of the most likely failure point. 
The results are valid for cases where the failure function is differentiable in this point. 
Also the known result for the sensitivity of the first order reliability index d(J/d9 is ob
tained in the analysis. Finally, it is shown how a parametric sensitivity factor for the pro
bability of failure can be estimated by directional Monte Carlo simulation. 

J.ilm,,. ORDER REIJABIIJTY ANALYSIS 

Consider a reliability problem defined in terms of the safety margin G(X) where G is 
the failure function and X is the vector of physical basic variables with density I xf,.x). 
Failure occurs when G(X)s 0, whereas G(X) > 0 identifies a safe state. Assuming that the 
probability distribution of X is continuous, a variable transformation T: X=T(U) exists 
such that U is a vector of n independent, standardized Gaussian variables, see [6]. The 
failure function in u-variables is 9 (u) = G(T(u», and the probability of failure PF equ~ls 
P[g(U)SO]. 
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Application of a first order reliability method implies that the failure surface in u
space. aF = lu I 9 (u)=OI. is approximated by its tangent hyperplane in the point u" 
closest to the origin. Here it is assumed that only one such point exists. i.e. that the sur
face is relatively flat. and that 9 (u) is differentiable in this point. 

The first order reliability index. {J. is defined as the minimum distance from the ori
gin to the failure surface in u-space. The most likely failure point u" satisfies 

u" = {Jo.. {J = ~~-; (2) 

where 01 is the unit normal vector to the limit state surface in u". In terms of the gra
dient vector 

v ( ) = (Q.rzhl Q.rzhl . .. ~\ 
gu "'''''a J uU 1 vU2 Un 

(3) 

01 can be expressed as 

01 = _ Vg (u") 
I Vg (u") I (4) 

The first order approximation to the failure probability is c!>( -(J). Improved approxima
tions to the probability can be obtained by (asymptotic) second order reliability analysis. 
[5.6]. 

PARAMETRIC SENSITIVITY OF (3 AND 01 

Now. assume the reliability problem involves a deterministic parameter 8 such that 
the failure surface in u-space can be written 

g(u.8) = 0 (5) 

If 8 is a deterministic physical variable. 8 appears in the failure function G = G(X. 8). 
whereas. if 8 is a distributional parameter it enters the problem in the variable transfor
mation. i.e. T= T(U.8). In the present analysis the problem is described solely in the 
general form in Eq. 5. In practical applications the origin of 8 may be exploited and 
derivatives of 9 (u.e) may conveniently be expressed in terms of G and T quantities and 
derivatives thereof. 

The derivative of the first order reliability index {3 with respect to the parameter 8 is 

!liL _ r du" 
d8 - 01 de 

using {3=yu"Tu". 

(6) 

Correspondingly. the derivative of the unit normal vector 01 = u" / (3 in the most likely 
failure point can be written 

~ = .L( du" _ !liLa) = 
d8 (3 d8 d8 

1 du" T du" ) -(---01 --01 
{3 d8 d8 

(7) 

using the result in Eq. 6. 

Both derivatives are a function of the derivative du"/de of the most likely failure 
point u" with respect to 8. However. from Eq. 6 it is seen that d{J/d8 only depends on the 
component of du"/de in the direction of 01. On the other hand. dOl/de is equal to the com
ponent of du"/d8 orthogonal to a.. scaled by 1I{3. Fig. 1. du"/de is derived in the following 
section. 
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U-space 

Fig. 1. Illustration of du", df3 and da. 

PARAMETRIC SENSITMTY OF THE MOST LIKELY FAILURE POINT u" 

The derivative of the most likely failure u" with respect to the parameter e is 
derived under the conditions that, i) u" is a point on the failure surface, i.e. Eq. 5 is 
satisfied, and ii) u" is the point closest to the origin, i.e., u" is parallel to the gradient 
vector Vg in the point, 

u· = -AVg, (8) 

For the increment de in the parameter the most likely failure point is assumed to 
change by the amount du", Fig. 1. The new point, u" + du" must also satisfy the two condi
tions above. Differentiation of the first condition, Eq. 5, yields 

Differentiation of the second condition, Eq. 8, gives 

du" = -~Vg -"A!ffJL 
de de de 

(9) 

(10) 

Let D be the matrix of second order derivatives of 9 in u, i.e. D = !o2g (u")/OU; O'tLj I. Us
ing that 

(11) 

an expression for du"/de is obtained from Eq. 10 and substituted into Eq. 8. From this 
equation, dA/de is found and inserted into the expression for du"/de. After rearranging, 
the result for du"/de can be expressed as 

du" = __ l_ iln a r 1 iln Aa T Aa I ~ + l--~(-- - a) + (AT/-a ATj--) (12) 
de IVgl ae IVgl ae aTAa aTAa 

where 

.... = _,,!F!JL ., ae ' A = [I + ADJ- 1 ( 13) 

and I is the identity matrix. 
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________ +-____ ~~----~~~--~~--~~---------r 
a=-~ 

IVg I 

Fig. 2. Geometrical illustration of d{J/dB. The parametric sensitivity factor for the first order reli
ability index can be derived by considering the change in distance from the origin in the direc
tion of a. The same type of derivation is carried out in the section on directional simulation 

below. 

The first term is a vector parallel to a. Furthermore. by multiplication with aT it is 
seen that the contribution in the bracket is orthogonal to a. Using Eqs. 6 and 7 together 
with Eq. 12 yields 

Mt.. = _1 _fliL (14) 
d8 IVgl 08 

and 

da 
d8 

With Eqs. 14 and 15 inserted. Eq. 12 expresses the trivial result 

C;;* = ~a + p~: 
for u*=pa. 

(15) 

(16) 

The result in Eq. 14 is the known asymptotic result from [4]. see also [6]. A geometri
cal interpretation of the result is given in Fig. 2. The sensitivity factor for the first order 
reliability index is independent of A. i.e. independent of the curvature of the failure sur
face in the most likely failure point. 

The sensitivity factor for the unit normal vector da/d8 depends on A. i.e. on the cur
vatures in the point. If the curvatures are neglected (or the failure surface indeed is 
plane in the most likely failure point). that is A= I. the first parenthesis in the bracket in 
Eq. 12 (and Eq. 14) is equal to zero. and the expressions for du*/d8 and da/d8 reduces to 

du· 
= ~a + ('1/ - a T'1/ a ) ( 17) 

dB 

and 

~ = L('1/ -aT'1/a) (18) 
d8 {3 

Numerical examples indicate that the influence of the curvatures on daldB may be 
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insignificant. and that da/de therefore for practical purposes can be calculated without 
computing the matrix of second order derivatives D. However. it is noted that the 
second order derivative in 7j. i.e. the derivatives of the gradient vector 'flg with respect 
to 8. must be calculated. 

EXAMPLES 

In this section two small examples illustrating the derived sensitivity factors are 
given. The basic variables in both examples are two normally distributed variables Xl 
and X z of means J..LI and J..Lz. standard deviations ul and Uz and mutually correlaled with 
correlation coefficienl p. The transformation to the standardized U -space is carried out 
by the transformation 

Xl = UIUI + J..LI 

Xz = uz(pu I + vi-pZuz) + 11-2 

(19a) 

(19b) 

The initial values of the distributional parameters from which the parametric sensitivity 
analyses are performed are 

Example 1: Plane failure surface 

For the linear safely margin 

M = X1-Xz 
the failure function in lhe standard variables u is 

(20) 

(21 ) 

First. the sensitivity to changes in Uz is sludied. i.e. 8 = uz. From Eq. 21 it is seen that an 
increment in Uz decreases the positive coefficient to U I and increases numerically lhe 
negative coefficient to uz. assuming the values for the parameters given above. It is 
therefore expected that changes in the value of Uz changes the unil normal vector a 
significantly. Since the limit stale surface is plane. all second order derivative with 
respect to ul and Uz are zero. and the simple formula in Eq. 18 is valid. 

Approximations {3A and aA to the exact results {3g = (3(8 + !J.8) and ag = a(8 + !J.e). 
respectively. are computed by 

{3A = f30 + ~8)M (22) 

and 

I !la + ~~ (8)!J.(J I 
(23) 

where f30 and !la are the results for the initial parameter value 8. 

The approximative results are compared to the exact results. In Fig. 3 results are 
shown for uz-values between 0 and 0.6. corresponding to reliability index values in the 
range 1.92 to 3.85 (the variation is not monotone in uz)· The three quantities {3A/{3g. 

ClA TaE and 1lo1'aE are shown. The laller quantily describes how much the unit normal vec
lor changes direction with the parameter. Il is seen from the resulls lhat even for 
significanl changes in OoE as compared to !la. the approximation cxA is very good. 
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I.Sc-----,------.-----,------r-----,------, 

0.75 
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Fig. 3. Results from parametric sensitivity analysis with respect to the standard deviation u2' 

Plane failure surface. 

I.OS.---r---~--~~~--,_--,---_r--_r---r--, 

0.1 O.Z 0.3 0.4 0.5 O.S 0.7 0.8 0.9 P 

Fig. 4. Results from parametric sensitivity analysis with respect to the correlation coefficient p. 
Plane failure surface. 

In Fig. 4 results for e = p between 0.0 and 1.0 are shown. The corresponding range of 
the reliability index is 2.37 to 23.6 (monotone variation). The moderate variation in 
aoTo.E shows that the unit normal vector in this case almost has the same direction for all 
considered values of p. Again, the approximation cxA turns out to be good in a large range. 

It is seen that the approximation fJA to the (first order) reliability index fJ in this case 
is accurate only in a small range around the initial value p = 0.50. A reason for this is, of 
course, the very large (non-linear) changes in the value of the reliability index. A better 
approximation can be obtained by including the second order derivative of fJ with 
respect to e, i.e. 

ft = ~T du" + aT d2u" (24) 
de de de de2 

and then use the second order approximation 

(25) 
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It is necessary to calculate the second order derivative of u· with respect to e. In general 
this is not likely to be practicable. For the simple example considered here the deriva
tive can be found directly from a closed form expression for the reliability index. The 
thin solid line in Fig. 4 shows the ratio between the second order approximation in Eq. 25 
and the exact result. Even though improvements are obtained as compared to the ap
proximation in Eq. 22, a good approximation to the reliability index is still obtained only 
in a smaller range. This, together with the practical difficulties in obtaining the second 
order derivatives of u· with respect to e suggest not to follow this approximation further. 

Example 2: Non-Flat Failure Surface 

For the safety margin 

M = 12 - Xr - X~ 

the g -function in the standard variables u is 

g(ul,u2) = 12-(UIUl+fll)2_[U2(PUl+V1-p2u2)+fl2l2 

With the initial parameter values given above the following results are obtained: 

rO.9263] r-2.3151] r-0.2250 -0.0779] 
u = fJo.. = 3.4277[ 0.3767' Vg = [-0.9414' D = [-0.0779 -0.135 

For e = U2 we get 

and 

r 8.9924] 
'1/ = [15.5754 ' 

_[r 1.4763 0.1937] 
A- 0.1937 1.2526 

du. = r[-5.4859 1 
dB 3.0761' !YL= -39231 de . , 

do.. 
de 

r -0. 5403 1 
= l 1.3286 

1.1r------r----~~----,_----~------.------, 

I.05~----~----~r_-----~----~ 

0.9L-----~----~~----~----~------~----~ 
o 0,1 0.2 0.3 0.4 0.5 0.6 (12 

(26) 

(27) 

J'ig. 5. Results from parametric sensitivity analysis with respect to the standard deviation (T2. 

Non-fiat failure surface. 

Results for U2-values between 0.0 and 0.30 corresponding to values of the first order reli
ability index between 2.39 and 4.39 are shown in Fig. 5. As in Fig. 3, from the results on 
alaE a significant change in the unit normal veclor is observed. The approximation to 
the unit normal vector based on the parametric sensitivity factor turns again out to be 
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Fig. 6. Results from parametric sensitivity analysis with rcspect to the standard deviation 0'2' 

Comparison with results for the unit normal vector when the curvature of the non-fiat failure sur

face is ignored. 

very accurate in a larger range. 

For comparison, results for da/dB are calculated with A= I, i.e. the curvatures of the 
limit state surface are neglected. The result for da/de is 

da r -0.48551 
~A= I) = l 1.1939 

and the results for uA using this vector is practically the same as before. In fact, as seen 
in Fig. 6, in this case even (slightly) better results are observed for large u2-values. For 
practical purposes il may therefore not be worthwhile to calculate the matrix of second 
order derivatives D for the sole purpose of calculating the parametric sensitivity faclor 
for the unit normal vector. 

DIRECTIONAL SIMULATION OF PARAMETRIC SENSITMIT FACTORS 

Directional simulation is a conditional expectation Monle Carlo simulation method 
originally suggested for computing the multi-dimensional normal distribution function, 
[2]. The approach is directly applicable as a general simulation method for probability 
integration within structural reliability analysis, and the efficiency can be significantly 
improved by importance sampling based on results from FORM/SORM-analysis, [1,3]' In 
this section it is briefly outlined how parametric sensitivity factors dpp/dB for the proba
bility of failure Pp can be estimated by directional simulation. 

The basic idea in directional simulation is to express the standard normal vector U 
as RC, where C is a unit vector uniformly distributed on the unit sphere On' and R;;;, 0 is 
a chi-distributed variable. The probability of failure is expressed by the integral 

pp = ! P[g(RC),,;OIC=e]Jde)de = !p(e)Jc(e)de 
CEOn CEOn 

(28) 

where Jde) is the constant density on the n-dimensional unit sphere. Provided the safe 
set is star-shaped with respect to the origin, the condition'al probability p (e) simply 
reads 

(29) 
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where r = r (c) is the distance from the orIgm to the failure surface in the direction 
defined by c, and X! is the chi-square distribution function of n degrees of freedom. If 
the safe set in u-space is not star-shaped the probability P (c) is equal to a sum of proba
bilities, each given in terms of the chi-square distribution function. 

An estimate of PF can be obtained by performing N simulations of the unit vector C, 
calculate the distance r for each generated c-vector, and then calculate the sample 
value P (c) by Eq. 29. The average of the sample values is an unbiased estimator for PF' 
An outcome ci of C can be established by generating an outcome lLo of the standard 
Gaussian vector U and then use ci = Ui/llLo I. 

An expression for the parametric sensitivity factor dpF/de can be obtained from Eqs. 
28 and 29 as 

:- = J -2r: kn(r2)Jdc)dc 
ce:o,. 

(30) 

where k n is the chi-square density function of n degrees of freedom. Using this expres
sion dr/dB can be estimated by directional simulation quite similarly to the simulation of 
PF' In addition to determining r = r (c) in each simulation, also the derivative dr/tW must 
be computed. 

The expression for dr/dB is derived under the conditions that i) U = rc is a point on 
the limit state surface, i.e. g(rbc,B)=O, and ii) that du=drc is parallel to u, i.e. 
du= dru, Fig. 7. Substituting this expression for du into Eq. 9, solving for dr, and insert
ing this result into du = dru, yields after rearranging 

.!!!!... - __ ll_.fl1L (31) 
dB - Vg T u {j(J 

The derivative dr/de can then be expressed as 

~ = uTdu = __ 1_.fl1L 
de de Vg Tc {j(J 

(32) 

It is seen that drldB is equal to dj9/dB in Eq. 15 for c = - Vg / I Vg I. Fig. 2 gives a geometri
cal interpretation of the result in Eq. 32. 

"g. 7. Illustration of drld8 for directional simulation of parametric sensitivity factors. 
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A numerical example on directional simulation of parametric sensitivity factors can 
be found in [3], where the reliability with respect to plastic collapse of frame and truss 
structures is studied. The reliability is formulated on basis of the lower bound theorem 
of plasticity theory. The corresponding failure function is complicated in the sense that 
each evaluation of the function requires the solution of a linear programming problem. 
The same is required to determine the distance r(c} for given direction c, and drldB 
must be computed by solving a set of linear equations. Since dpFldB (as PF) typically is 
of small order within structural reliability, large sample sizes are required to get a cer
tain estimate on the sensitivity factor. Examples indicate that the ratio between 
different derivatives can be well estimated on basis of a smaller sample size. In many 
practical applications only the ratio between parametric sensitivity measures is needed. 

CONCLUSION 
Parametric sensitivity measures in structural reliability analysis are investigated. In 

particular, the derivative of the most likely failure point with respect to a deterministic 
parameter e is derived. The following results and conclusions are reported: 

• A parametric sensitivity factor da/dB for the unit normal vector to the failure sur
face in the most likely failure point is derived. The factor has important applications 
in system reliability analysis and outcrossing problems. 

• da/dB is a function of the curvatures of the failure surface in the most likely failure 
poinl. However, numerical calculations indicate that this dependence may be 
neglected in practical applications, thereby saving the computation of the matrix of 
second order derivatives of the failure function. To determine da/dB requires then 
only the computation of the derivatives of Vg with respect to e in excess of the stan
dard output from a first order reliability analysis. 

• Applications of da/dB to estimate the change in the unit normal vector correspond
ing to a change i:J.e in e show accurate results. 

• The known result for the parametric sensitivity factor dP/de for the first order relia
bility index is analyzed. The factor is used to estimate the change in the first order 
reliability index corresponding to a change i:J.e in the parameter e. An improved ap
proximation can be obtained by including the second order derivative d2PldB2 as 
well. Results are shown for a small example where the derivative is easily obtained. 
In general it seems not practicable, nor necessary for the practical applications to 
use this derivative. 

• It is shown how parametric sensitivity factors for the probability of failure dpF/de 
can be estimated by directional Monte Carlo simulation. 
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